Automated segmentation of normal and diseased coronary arteries – The ASOCA challenge

冠状动脉 分割 冠状动脉疾病 计算机科学 医学 狭窄 人工智能 动脉 放射科 计算机视觉 心脏病学
作者
Ramtin Gharleghi,Dona Adikari,Katy Ellenberger,Sze‐Yuan Ooi,Chris Ellis,Chung‐Ming Chen,Ruochen Gao,Yuting He,Raabid Hussain,Chia‐Yen Lee,Jun Li,Jun Ma,Ziwei Nie,Bruno Oliveira,Yaolei Qi,Youssef Skandarani,João L. Vilaça,Xiyue Wang,Sen Yang,Arcot Sowmya
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:97: 102049-102049 被引量:57
标识
DOI:10.1016/j.compmedimag.2022.102049
摘要

Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sfq发布了新的文献求助10
刚刚
天天快乐应助yu采纳,获得10
1秒前
Wzebrafish完成签到,获得积分10
1秒前
CipherSage应助李树玉采纳,获得10
2秒前
2秒前
wahaha发布了新的文献求助10
2秒前
2秒前
sakura完成签到,获得积分10
2秒前
大模型应助tubage123采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
所所应助草莓熊草莓采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
小蘑菇应助裴彤采纳,获得10
3秒前
老阎应助科研通管家采纳,获得30
4秒前
打打应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
科研通AI6应助Lanny采纳,获得10
4秒前
深情安青应助黄裕鑫采纳,获得30
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
静花水月发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
嘿嘿发布了新的文献求助10
5秒前
HuangJiajia_FZU完成签到,获得积分10
5秒前
芷莯发布了新的文献求助10
5秒前
6秒前
科研通AI6应助张鹏荣采纳,获得10
7秒前
7秒前
7秒前
领导范儿应助27采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399080
求助须知:如何正确求助?哪些是违规求助? 4518605
关于积分的说明 14070479
捐赠科研通 4430857
什么是DOI,文献DOI怎么找? 2432932
邀请新用户注册赠送积分活动 1425330
关于科研通互助平台的介绍 1404343