Digital Watermarking as an Adversarial Attack on Medical Image Analysis with Deep Learning

对抗制 数字水印 计算机科学 人工智能 深度学习 图像(数学) 计算机视觉 计算机安全 数字图像 模式识别(心理学) 图像处理
作者
Kyriakos D. Apostolidis,George A. Papakostas
出处
期刊:Journal of Imaging [Multidisciplinary Digital Publishing Institute]
卷期号:8 (6): 155-155 被引量:17
标识
DOI:10.3390/jimaging8060155
摘要

In the past years, Deep Neural Networks (DNNs) have become popular in many disciplines such as Computer Vision (CV), and the evolution of hardware has helped researchers to develop many powerful Deep Learning (DL) models to deal with several problems. One of the most important challenges in the CV area is Medical Image Analysis. However, adversarial attacks have proven to be an important threat to vision systems by significantly reducing the performance of the models. This paper brings to light a different side of digital watermarking, as a potential black-box adversarial attack. In this context, apart from proposing a new category of adversarial attacks named watermarking attacks, we highlighted a significant problem, as the massive use of watermarks, for security reasons, seems to pose significant risks to vision systems. For this purpose, a moment-based local image watermarking method is implemented on three modalities, Magnetic Resonance Images (MRI), Computed Tomography (CT-scans), and X-ray images. The introduced methodology was tested on three state-of-the art CV models, DenseNet 201, DenseNet169, and MobileNetV2. The results revealed that the proposed attack achieved over 50% degradation of the model's performance in terms of accuracy. Additionally, MobileNetV2 was the most vulnerable model and the modality with the biggest reduction was CT-scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助鬼小妞nice采纳,获得10
1秒前
zho关闭了zho文献求助
1秒前
一个星完成签到,获得积分10
2秒前
彭于晏应助爱听歌的丹琴采纳,获得10
2秒前
raycee完成签到,获得积分10
2秒前
MLJ发布了新的文献求助10
2秒前
wushuping完成签到,获得积分10
3秒前
坚强的曼雁完成签到,获得积分10
4秒前
李爱国应助大白采纳,获得10
4秒前
5秒前
大模型应助Martinet采纳,获得30
6秒前
HI完成签到 ,获得积分10
6秒前
towanda完成签到,获得积分10
6秒前
.。。完成签到,获得积分10
6秒前
小雨堂完成签到 ,获得积分10
7秒前
西瓜完成签到,获得积分10
7秒前
幽默亦旋完成签到 ,获得积分10
8秒前
离岸完成签到,获得积分10
8秒前
Yuki完成签到,获得积分10
8秒前
玛斯特尔完成签到,获得积分10
9秒前
影墨发布了新的文献求助10
9秒前
四爷完成签到,获得积分10
9秒前
10秒前
HEIKU应助DI采纳,获得10
11秒前
防易容发布了新的文献求助10
11秒前
哈哈哈哈呵完成签到,获得积分10
11秒前
小胡同学完成签到,获得积分10
11秒前
11秒前
lee发布了新的文献求助10
12秒前
共享精神应助耶耶采纳,获得10
12秒前
思源应助火星上的小虾米采纳,获得10
12秒前
萱1988完成签到,获得积分10
12秒前
帅佳明完成签到,获得积分10
12秒前
zt完成签到,获得积分10
13秒前
风趣安青完成签到 ,获得积分10
13秒前
rain发布了新的文献求助10
13秒前
华仔应助斯文的慕儿采纳,获得10
14秒前
LHW完成签到,获得积分10
14秒前
安详夏彤完成签到,获得积分10
14秒前
黑子哥完成签到,获得积分10
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816315
求助须知:如何正确求助?哪些是违规求助? 3359768
关于积分的说明 10404785
捐赠科研通 3077641
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767816