Seeing is visiting: discerning tourists’ behavior from landmarks in ordinary photos

地标 旅游 社会化媒体 元数据 广告 互联网 数码摄影 数字媒体 万维网 计算机科学 摄影 地理 地图学 视觉艺术 业务 艺术 考古
作者
Ning Deng,Qu Yujie,Cheng XiaoBin,Qin Jing
出处
期刊:Current Issues in Tourism [Taylor & Francis]
卷期号:26 (15): 2494-2512 被引量:6
标识
DOI:10.1080/13683500.2022.2089547
摘要

AbstractAbstractThe unprecedented development of the internet has compelled a growing number of tourists to share their photographs on social media. These images convey valuable memories and points of interest. As photography and content sharing have become commonplace among visitors, pictorial digital footprints represent a prevalent topic in tourism research. Studies on tourists' movement trajectories hold great importance for destination management, marketing, and services. Flickr is a popular source in photo-based tourism research given the digital footprints embedded in photos' metadata; however, the site's bottlenecks (e.g. declining user activity, overly professional photographs) raise concerns. Scholars have instead gradually shifted their attention to emerging photo platforms such as Instagram—yet these pictures do not contain geographical information. Taking Beijing as a focal location, we introduce an approach in which landmark recognition complements the geographical cues in Instagram photos. Instagram check-in data and data identified through landmark recognition are validated. Ultimately, the recognized landmark information appears highly correlated with check-in data. This study demonstrates the feasibility of landmark recognition for extracting tourists' footprints from ordinary content in user-generated photos. Findings also confirm that many photos from general social media platforms can serve as alternative and representative data sources in photo-based tourism research.Keywords: Tourist behavior analysisUGC photosInstagramlandmark recognition Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Major Program of National Fund of Philosophy and Social Science of China : [Grant Number 20ZDA067]; National Natural Science Foundation of China: [Grant Number 72172007].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘刘发布了新的文献求助10
5秒前
冰魂应助AAAADiao采纳,获得10
5秒前
Xin完成签到,获得积分10
6秒前
6秒前
fl发布了新的文献求助10
9秒前
小白完成签到 ,获得积分10
10秒前
斯文败类应助落后月亮采纳,获得10
11秒前
17秒前
19秒前
哎呀完成签到 ,获得积分10
19秒前
科研通AI2S应助时尚的蘑菇采纳,获得10
19秒前
翻译度完成签到,获得积分10
21秒前
23秒前
ziyuexu发布了新的文献求助20
23秒前
23秒前
巫马太兰发布了新的文献求助10
27秒前
ziyuexu完成签到,获得积分10
29秒前
脑洞疼应助RATHER采纳,获得10
30秒前
33秒前
巫马太兰完成签到,获得积分20
38秒前
38秒前
风趣的易真完成签到,获得积分10
39秒前
44秒前
47秒前
今夕是何年完成签到 ,获得积分10
48秒前
RATHER发布了新的文献求助10
53秒前
海盗船长完成签到,获得积分10
53秒前
Hello应助科研通管家采纳,获得10
53秒前
李健应助科研通管家采纳,获得10
54秒前
Lucas应助科研通管家采纳,获得10
54秒前
桐桐应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
54秒前
科研通AI5应助科研通管家采纳,获得30
54秒前
Owen应助科研通管家采纳,获得10
54秒前
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
星辰大海应助科研通管家采纳,获得10
54秒前
小二郎应助科研通管家采纳,获得10
54秒前
小蘑菇应助科研通管家采纳,获得10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872