最佳位置
致密气
天然气田
相
岩性
领域(数学)
水库工程
斑点
人工智能
地质学
模式识别(心理学)
转化(遗传学)
算法
水力压裂
计算机科学
数据挖掘
石油工程
岩石学
天然气
工程类
数学
地貌学
物理化学
构造盆地
废物管理
化学
剪切(地质)
古生物学
生物化学
石油
纯数学
基因
作者
Yuxuan Deng,Wendong Wang,Yuliang Su,Shibo Sun,Xinyu Zhuang
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme
[ASM International]
日期:2023-01-23
卷期号:145 (7)
被引量:6
摘要
Abstract With the increasing exploration and development of tight sandstone gas reservoirs, it is of utmost importance to clarify the characteristics of “sweet spots” within tight gas reservoirs. Considering the complex lithology of tight gas reservoirs, fast phase transformations of sedimentary facies, and vital diagenetic transformation, there is a low success rate of reservoir prediction in the lateral direction, and heterogeneity evaluation is challenging. Establishing a convenient standard for reservoir interpretation in the early stages of development is complex, making designing hydraulic fracturing in the later phases a challenge. In this paper, we propose a detailed study of the engineering and geological double sweet spots (DSS) analysis system and the optimization of sweet spot parameters using the independent weight coefficient method. K-means++ algorithm and Gaussian mixture gradient algorithm unsupervised machine learning algorithms are used to determine the classification standard of general reservoirs and high-quality sweet spot reservoirs in the lower 1 layer of He-8 in the x block of the Sulige gas field. This application of the field example illustrates that the proposed double sweet spot classification and evaluation method can be applied to locate the reservoir’s sweet spot accurately.
科研通智能强力驱动
Strongly Powered by AbleSci AI