Diagnostic and prognostic value of ECG-predicted hypertension-mediated left ventricular hypertrophy using machine learning

左心室肥大 心脏病学 医学 内科学 古怪的 逻辑回归 随机森林 心力衰竭 心电图 机器学习 血压 计算机科学 量子力学 物理
作者
Hafiz Naderi,Julia Ramírez,Stefan van Duijvenboden,Esmeralda Ruiz Pujadas,Nay Aung,Lin Wang,Bishwas Chamling,Marcus Dörr,Marcello Ricardo Paulista Markus,C. Anwar A. Chahal,Karim Lekadir,Steffen E. Petersen,Patricia B. Munroe
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.04.22.24306204
摘要

Abstract Background Four hypertension-mediated left ventricular hypertrophy (LVH) phenotypes have been reported using cardiac magnetic resonance (CMR): normal LV, LV remodeling, eccentric and concentric LVH, with varying prognostic implications. The electrocardiogram (ECG) is routinely used to detect LVH, however its capacity to differentiate between LVH phenotypes is unknown. This study aimed to classify hypertension-mediated LVH from the ECG using machine learning (ML) and test for associations of ECG-predicted phenotypes with incident cardiovascular outcomes. Methods ECG biomarkers were extracted from the 12-lead ECG of 20,439 hypertensives in UK Biobank (UKB). Classification models integrating ECG and clinical variables were built using logistic regression, support vector machine (SVM) and random forest. The models were trained in 80% of the participants, and the remaining 20% formed the test set. External validation was sought in 877 hypertensives from the Study of Health in Pomerania (SHIP). In the UKB test set, we tested for associations between ECG-predicted LVH phenotypes and incident major adverse cardiovascular events (MACE) and heart failure. Results Among UKB participants 19,408 had normal LV, 758 LV remodeling, 181 eccentric and 92 concentric LVH. Classification performance of the three models was comparable, with SVM having a slightly superior performance (accuracy 0.79, sensitivity 0.59, specificity 0.87, AUC 0.69) and similar results observed in SHIP. There was superior prediction of eccentric LVH in both cohorts. In the UKB test set, ECG-predicted eccentric LVH was associated with heart failure (HR 3.42, CI 1.06-9.86). Conclusions ECG-based ML classifiers represent a potentially accessible screening strategy for the early detection of hypertension-mediated LVH phenotypes. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助酷炫的夜蓉采纳,获得10
1秒前
ABlulu发布了新的文献求助10
2秒前
xzy998驳回了冰魂应助
2秒前
2秒前
Elena完成签到,获得积分10
5秒前
pjxxx完成签到 ,获得积分10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
秦月未完完成签到,获得积分10
8秒前
工大机械完成签到,获得积分10
12秒前
15秒前
16秒前
Demi发布了新的文献求助100
18秒前
冷酷鱼完成签到 ,获得积分10
20秒前
脑洞疼应助跳跃的以蕊采纳,获得10
20秒前
21秒前
多巴胺发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
小朵完成签到,获得积分10
21秒前
营养师在伊犁跳舞完成签到 ,获得积分10
23秒前
明天完成签到,获得积分10
23秒前
Demi完成签到,获得积分10
24秒前
彭于晏应助端庄栾采纳,获得10
27秒前
lone623完成签到 ,获得积分10
36秒前
38秒前
Elena发布了新的文献求助10
41秒前
端庄栾发布了新的文献求助10
42秒前
xiying完成签到 ,获得积分10
43秒前
43秒前
橙橙完成签到,获得积分10
44秒前
愉快的犀牛完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
50秒前
fang完成签到 ,获得积分10
51秒前
fmm完成签到,获得积分20
51秒前
HEIKU应助小赞采纳,获得10
52秒前
彭于晏应助坦率铅笔采纳,获得10
53秒前
小蛮样完成签到,获得积分10
53秒前
明理念桃完成签到 ,获得积分10
54秒前
微醺小王完成签到 ,获得积分10
57秒前
jialin发布了新的文献求助10
58秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862701
求助须知:如何正确求助?哪些是违规求助? 3405263
关于积分的说明 10643922
捐赠科研通 3128761
什么是DOI,文献DOI怎么找? 1725437
邀请新用户注册赠送积分活动 831042
科研通“疑难数据库(出版商)”最低求助积分说明 779516