亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and External Validation of Machine Learning Models for Diabetic Microvascular Complications: Cross-Sectional Study With Metabolites

医学 糖尿病 横断面研究 内科学 交叉验证 计算机科学 人工智能 机器学习 内分泌学 病理
作者
Feng He,Clarissa Ng Yin Ling,Simon Nusinovici,Ching‐Yu Cheng,Tien Yin Wong,Jialiang Li,Charumathi Sabanayagam
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e41065-e41065 被引量:7
标识
DOI:10.2196/41065
摘要

Background Diabetic kidney disease (DKD) and diabetic retinopathy (DR) are major diabetic microvascular complications, contributing significantly to morbidity, disability, and mortality worldwide. The kidney and the eye, having similar microvascular structures and physiological and pathogenic features, may experience similar metabolic changes in diabetes. Objective This study aimed to use machine learning (ML) methods integrated with metabolic data to identify biomarkers associated with DKD and DR in a multiethnic Asian population with diabetes, as well as to improve the performance of DKD and DR detection models beyond traditional risk factors. Methods We used ML algorithms (logistic regression [LR] with Least Absolute Shrinkage and Selection Operator and gradient-boosting decision tree) to analyze 2772 adults with diabetes from the Singapore Epidemiology of Eye Diseases study, a population-based cross-sectional study conducted in Singapore (2004-2011). From 220 circulating metabolites and 19 risk factors, we selected the most important variables associated with DKD (defined as an estimated glomerular filtration rate <60 mL/min/1.73 m2) and DR (defined as an Early Treatment Diabetic Retinopathy Study severity level ≥20). DKD and DR detection models were developed based on the variable selection results and externally validated on a sample of 5843 participants with diabetes from the UK biobank (2007-2010). Machine-learned model performance (area under the receiver operating characteristic curve [AUC] with 95% CI, sensitivity, and specificity) was compared to that of traditional LR adjusted for age, sex, diabetes duration, hemoglobin A1c, systolic blood pressure, and BMI. Results Singapore Epidemiology of Eye Diseases participants had a median age of 61.7 (IQR 53.5-69.4) years, with 49.1% (1361/2772) being women, 20.2% (555/2753) having DKD, and 25.4% (685/2693) having DR. UK biobank participants had a median age of 61.0 (IQR 55.0-65.0) years, with 35.8% (2090/5843) being women, 6.7% (374/5570) having DKD, and 6.1% (355/5843) having DR. The ML algorithms identified diabetes duration, insulin usage, age, and tyrosine as the most important factors of both DKD and DR. DKD was additionally associated with cardiovascular disease history, antihypertensive medication use, and 3 metabolites (lactate, citrate, and cholesterol esters to total lipids ratio in intermediate-density lipoprotein), while DR was additionally associated with hemoglobin A1c, blood glucose, pulse pressure, and alanine. Machine-learned models for DKD and DR detection outperformed traditional LR models in both internal (AUC 0.838 vs 0.743 for DKD and 0.790 vs 0.764 for DR) and external validation (AUC 0.791 vs 0.691 for DKD and 0.778 vs 0.760 for DR). Conclusions This study highlighted diabetes duration, insulin usage, age, and circulating tyrosine as important factors in detecting DKD and DR. The integration of ML with biomedical big data enables biomarker discovery and improves disease detection beyond traditional risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Waymaker采纳,获得10
1秒前
Waymaker完成签到 ,获得积分10
25秒前
42秒前
在努力了发布了新的文献求助30
47秒前
liwang9301完成签到,获得积分10
57秒前
科目三应助科研通管家采纳,获得10
57秒前
abcdefg完成签到 ,获得积分10
1分钟前
怡然念之完成签到 ,获得积分10
1分钟前
11完成签到,获得积分10
2分钟前
Orange应助也曦采纳,获得10
2分钟前
2分钟前
也曦完成签到,获得积分10
3分钟前
冬菊完成签到 ,获得积分10
3分钟前
科研通AI5应助7NEFZ采纳,获得10
4分钟前
是木易呀完成签到,获得积分10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
7NEFZ发布了新的文献求助10
5分钟前
迅速的蜡烛完成签到 ,获得积分10
5分钟前
7NEFZ完成签到,获得积分20
6分钟前
ppppppp_76完成签到 ,获得积分10
6分钟前
豌豆发布了新的文献求助10
6分钟前
6分钟前
山橘月发布了新的文献求助10
7分钟前
漠mo完成签到 ,获得积分10
7分钟前
可爱的函函应助万晓博采纳,获得30
7分钟前
科研通AI5应助7NEFZ采纳,获得10
8分钟前
8分钟前
7NEFZ发布了新的文献求助10
8分钟前
万能图书馆应助wang采纳,获得30
8分钟前
8分钟前
133发布了新的文献求助10
8分钟前
dormraider完成签到,获得积分10
8分钟前
wang完成签到,获得积分10
9分钟前
澄碧千顷完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
wang发布了新的文献求助30
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244188
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508