Multitask deep learning for prediction of microvascular invasion and recurrence‐free survival in hepatocellular carcinoma based on MRI images

肝细胞癌 医学 试验装置 机器学习 深度学习 内科学 人工智能 放射科 计算机科学
作者
Fang Wang,Gan Zhan,Qingqing Chen,Hou‐yun Xu,Dan Cao,Yuan‐yuan Zhang,Yinhao Li,C. Zhang,Yao Jin,Wenbin Ji,Jianbing Ma,Yunjun Yang,Wei Zhou,Zhiyi Peng,Xiao Liang,Liping Deng,Lanfen Lin,Yen‐Wei Chen,Hongjie Hu
出处
期刊:Liver International [Wiley]
卷期号:44 (6): 1351-1362 被引量:25
标识
DOI:10.1111/liv.15870
摘要

Abstract Background and Aims Accurate preoperative prediction of microvascular invasion (MVI) and recurrence‐free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI and RFS using preoperative MRI scans. Methods Utilising a retrospective dataset of 725 HCC patients from seven institutions, we developed and validated a multitask deep learning model focused on predicting MVI and RFS. The model employs a transformer architecture to extract critical features from preoperative MRI scans. It was trained on a set of 234 patients and internally validated on a set of 58 patients. External validation was performed using three independent sets ( n = 212, 111, 110). Results The multitask deep learning model yielded high MVI prediction accuracy, with AUC values of 0.918 for the training set and 0.800 for the internal test set. In external test sets, AUC values were 0.837, 0.815 and 0.800. Radiologists' sensitivity and inter‐rater agreement for MVI prediction improved significantly when integrated with the model. For RFS, the model achieved C‐index values of 0.763 in the training set and ranged between 0.628 and 0.728 in external test sets. Notably, PA‐TACE improved RFS only in patients predicted to have high MVI risk and low survival scores ( p < .001). Conclusions Our deep learning model allows accurate MVI and survival prediction in HCC patients. Prospective studies are warranted to assess the clinical utility of this model in guiding personalised treatment in conjunction with clinical criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许元冬完成签到,获得积分10
1秒前
Maggie_403发布了新的文献求助10
1秒前
搜集达人应助无奈醉柳采纳,获得10
1秒前
1秒前
1秒前
Double_K发布了新的文献求助10
2秒前
2秒前
科研通AI6应助孤独雪柳采纳,获得10
2秒前
2秒前
古鲁蒂发布了新的文献求助10
2秒前
清秀笑晴完成签到 ,获得积分10
2秒前
尚尚完成签到,获得积分10
2秒前
Danna发布了新的文献求助10
3秒前
宋宋syi完成签到 ,获得积分10
3秒前
omg完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Kittymiaoo完成签到 ,获得积分10
4秒前
猪猪hero应助lllla采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
淇淇完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
丘比特应助千千晚星采纳,获得10
8秒前
dimples发布了新的文献求助10
9秒前
束负完成签到 ,获得积分10
9秒前
Javier发布了新的文献求助10
9秒前
英姑应助浮泷采纳,获得10
10秒前
ccc发布了新的文献求助30
10秒前
10秒前
10秒前
10秒前
端庄从凝发布了新的文献求助30
10秒前
轩辕峻熙完成签到,获得积分10
10秒前
李爱国应助Maggie_403采纳,获得10
11秒前
标致完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598267
求助须知:如何正确求助?哪些是违规求助? 4683852
关于积分的说明 14831714
捐赠科研通 4663128
什么是DOI,文献DOI怎么找? 2537168
邀请新用户注册赠送积分活动 1504770
关于科研通互助平台的介绍 1470427