亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Air-M: A Visual Reality Many-Agent Reinforcement Learning Platform for Large-Scale Aerial Unmanned System

可扩展性 软件部署 强化学习 计算机科学 无人机 虚拟现实 机器人学 群机器人 人工智能 机器人 分布式计算 群体行为 虚拟机 容器(类型理论) 实时计算 工程类 操作系统 机械工程 遗传学 生物
作者
Jiabin Lou,Wenjun Wu,Shuhao Liao,Rongye Shi
标识
DOI:10.1109/iros55552.2023.10341405
摘要

Reinforcement learning for swarms of flying robots is a challenging task that requires a large number of data samples. Moreover, the problem of sim-to-real transfer has long been a challenge in robotics algorithm deployment. To address these issues, we propose Air-M, a platform that facilitates large-scale drone swarm learning in a distributed docker container environment and deployment in a virtual reality setting. Air-M trains the policy network using physics engines and creates replicas of agents in docker containers, which helps amortize the computational cost. In addition, Air-M establishes an intermediate link between the simulation and the real world, allowing real drones to interact with virtual objects via virtual sensors. This enables the policy network to be trained using virtual agents and seamlessly transferred to real drones. Air-Mis highly scalable, accommodating hundreds of agents with dynamic models and virtual sensors. We evaluate the effectiveness of our approach by conducting experiments in three representative virtual scenarios with an increasing number of agents. Our results demonstrate that our method outperforms the state-of- the-art in terms of training efficiency and transferability, making it a promising platform for swarm robotics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
19秒前
熬夜猝死的我完成签到,获得积分10
30秒前
lzxbarry完成签到,获得积分0
43秒前
53秒前
1分钟前
Ysn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
梦想家发布了新的文献求助10
1分钟前
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
Virtual应助科研通管家采纳,获得10
2分钟前
2分钟前
xiaolang2004完成签到,获得积分10
3分钟前
3分钟前
mickaqi完成签到 ,获得积分10
4分钟前
fhw完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
norberta发布了新的文献求助10
4分钟前
MchemG应助科研通管家采纳,获得30
4分钟前
KSung完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Hvginn发布了新的文献求助10
5分钟前
5分钟前
灵巧灵松发布了新的文献求助10
5分钟前
Zzz_Carlos完成签到 ,获得积分10
5分钟前
灵巧灵松完成签到,获得积分20
6分钟前
6分钟前
6分钟前
桦奕兮完成签到 ,获得积分10
6分钟前
JrPaleo101完成签到,获得积分10
7分钟前
7分钟前
7分钟前
ljl86400完成签到,获得积分10
8分钟前
Owen应助科研通管家采纳,获得10
8分钟前
赘婿应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568866
求助须知:如何正确求助?哪些是违规求助? 3991276
关于积分的说明 12355594
捐赠科研通 3663388
什么是DOI,文献DOI怎么找? 2018871
邀请新用户注册赠送积分活动 1053272
科研通“疑难数据库(出版商)”最低求助积分说明 940874