亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of deep learning to fault diagnosis of rotating machineries

深度学习 人工智能 现存分类群 计算机科学 机器学习 领域(数学) 断层(地质) 数据科学 数学 进化生物学 纯数学 生物 地震学 地质学
作者
Hao Su,Ling Xiang,Aijun Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 042003-042003 被引量:20
标识
DOI:10.1088/1361-6501/ad1e20
摘要

Abstract Deep learning (DL) has attained remarkable achievements in diagnosing faults for rotary machineries. Capitalizing on the formidable learning capacity of DL, it has the potential to automate human labor and augment the efficiency of fault diagnosis in rotary machinery. These advantages have engendered escalating interest over the past decade. Although recent reviews of the literature have encapsulated the utilization of DL in diagnosing faults in rotating machinery, they no longer encompass the introduction of novel methodologies and emerging directions as DL methodologies continually evolve. Moreover, in practical application, novel issues and trajectories perpetually manifest, demanding a comprehensive exegesis. To rectify this lacuna, this article amalgamates current research trends and avant-garde methodologies while systematizing the utilization of anterior DL techniques. The evolution and extant status of DL in diagnosing faults for rotary machinery were delineated, with the intent of providing orientation for prospective research. Over the bygone decade, archetypal DL theory has empowered the diagnosis of faults in rotating machinery by directly establishing the nexus between mechanical data and fault conditions. In recent years, meta learning methods aimed at solving small sample scenarios and large model transformers aimed at mining big data features have both received widespread attention and development in the field of fault diagnosis of rotating machinery equipment. Although excellent results have been achieved in these two directions, there is no review and summary article yet, so it is necessary to update the review literature in the field of fault diagnosis of rotating machinery equipment. Lastly, predicated on a survey of the literature and the current developmental landscape, the challenges and prospective orientations of DL in rotary machinery fault diagnosis are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
48秒前
1分钟前
Chonger发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
爆米花应助Chonger采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
飞快的孱完成签到,获得积分10
3分钟前
3分钟前
边疆完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
赵一完成签到 ,获得积分10
5分钟前
6分钟前
dynamoo发布了新的文献求助200
6分钟前
6分钟前
李爱国应助迷人叫兽采纳,获得10
6分钟前
不是省油的灯完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
迷人叫兽发布了新的文献求助10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
井野浮应助迷人叫兽采纳,获得10
8分钟前
dynamoo发布了新的文献求助200
8分钟前
8分钟前
豪豪完成签到,获得积分10
8分钟前
9分钟前
9分钟前
9分钟前
Virtual给苹果涵蕾的求助进行了留言
9分钟前
井野浮应助迷人叫兽采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4527818
求助须知:如何正确求助?哪些是违规求助? 3967266
关于积分的说明 12293720
捐赠科研通 3632363
什么是DOI,文献DOI怎么找? 1999316
邀请新用户注册赠送积分活动 1035487
科研通“疑难数据库(出版商)”最低求助积分说明 925222