亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Engineering novel scaffolds for specific HDAC11 inhibitors against metabolic diseases exploiting deep learning, virtual screening, and molecular dynamics simulations

计算生物学 HDAC11型 组蛋白脱乙酰基酶 虚拟筛选 代谢稳定性 药物发现 化学 生物 生物化学 组蛋白 体外 基因
作者
Jiali Li,XiaoDie Chen,Rong Liu,Xingyu Liu,Mao Shu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:262: 129810-129810 被引量:3
标识
DOI:10.1016/j.ijbiomac.2024.129810
摘要

The prevalence of metabolic diseases is increasing at a frightening rate year by year. The burgeoning development of deep learning enables drug design to be more efficient, selective, and structurally novel. The critical relevance of Histone deacetylase 11 (HDAC11) to the pathogenesis of several metabolic diseases makes it a promising drug target for curbing metabolic disorders. The present study aims to design new specific HDAC11 inhibitors for the treatment of metabolic diseases. Deep learning was performed to learn the properties of existing HDAC11 inhibitors and yield a novel compound library containing 23,122 molecules. Subsequently, the compound library was screened by ADMET properties, Lipinski & Veber rules, traditional machine classification models, and molecular docking, and 10 compounds were screened as candidate HDAC11 inhibitors. The stability of the 10 new molecules was further evaluated by deploying RMSD, RMSF, MM/GBSA, free energy landscape mapping, and PCA analysis in molecular dynamics simulations. As a result, ten compounds, Cpd_17556, Cpd_2184, Cpd_8907, Cpd_7771, Cpd_14959, Cpd_7108, Cpd_12383, Cpd_13153, Cpd_14500and Cpd_21811, were characterized as good HDAC11 inhibitors and are expected to be promising drug candidates for metabolic disorders, and further in vitro, in vivo and clinical trials to demonstrate in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
俏皮的钻石完成签到 ,获得积分10
16秒前
轻松凌柏完成签到 ,获得积分10
47秒前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
yeah完成签到 ,获得积分10
2分钟前
2分钟前
田様应助whz采纳,获得10
2分钟前
2分钟前
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
whz发布了新的文献求助10
2分钟前
ala完成签到,获得积分10
2分钟前
2分钟前
whz完成签到,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
3分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
3分钟前
3分钟前
FJXTY发布了新的文献求助10
3分钟前
热情依白完成签到 ,获得积分10
3分钟前
3分钟前
FJXTY完成签到,获得积分10
3分钟前
3分钟前
3分钟前
yihuifa发布了新的文献求助10
3分钟前
3分钟前
4分钟前
slz发布了新的文献求助10
4分钟前
Thanks完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
JamesPei应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
Proxac完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553