Automatic building footprint extraction from photogrammetric and LiDAR point clouds using a novel improved-Octree approach

点云 计算机科学 摄影测量学 激光雷达 八叉树 人工智能 计算机视觉 基本事实 足迹 遥感 地理 考古
作者
Buray KARSLI,Ferruh Yılmaztürk,Murat Bahadir,Fevzi Karslı,Emirhan Özdemir
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:82: 108281-108281 被引量:10
标识
DOI:10.1016/j.jobe.2023.108281
摘要

Extracting building footprints from optical data is a time-consuming process. Automatic extraction of building footprints from point clouds is a challenging problem in terms of geometric irregularities, noisy points, points density, and accuracy. The aim of this paper is to automatically extract and regularize building footprints using point clouds with a new approach called Improved Octree (I-Octree) by modifying the Octree method. The method consists of the separation of ground and above ground objects from the point cloud by Simple Morphological Filter (SMRF), the removing noisy points from point cloud with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, the automatic extraction of building footprints by I-Octree, and the regularization of the building footprints with Automatic Building Outline Regularization (ABORE) method. The proposed approach was implemented on photogrammetric and Light Detection and Ranging (LiDAR) in four test areas. Ground truth maps were utilized as reference data for accuracy analysis by using pixel-based accuracy method. The accuracy results were above 90 % for the photogrammetric point clouds and above 97 % for the LiDAR point cloud. It was proven that the proposed approach can extract and regularize the selected buildings with high accuracy compared the studies in literature. In conclusion, it was demonstrated that the proposed approach enables the automatic extraction and regularization of building footprints from point clouds. Consequently, the map production process with point cloud data is facilitated to be both more efficient and rapid, and the results confirm the high efficacy of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianxie完成签到,获得积分10
刚刚
上官若男应助Solitude采纳,获得20
刚刚
elsa622发布了新的文献求助10
1秒前
1秒前
3秒前
风子发布了新的文献求助40
4秒前
123jopop完成签到,获得积分10
5秒前
5秒前
争取不秃顶的医学僧完成签到,获得积分10
6秒前
一休完成签到,获得积分10
6秒前
present发布了新的文献求助10
8秒前
9秒前
在水一方应助-J.e-采纳,获得10
9秒前
CLN完成签到,获得积分10
9秒前
诶飞飞飞飞完成签到,获得积分10
9秒前
顾矜应助微微采纳,获得10
11秒前
是龙龙呀发布了新的文献求助10
12秒前
yecheng完成签到,获得积分10
12秒前
小蘑菇应助谨慎萤采纳,获得10
12秒前
牛不可发布了新的文献求助10
14秒前
14秒前
wanci应助青栞采纳,获得10
15秒前
Solitude发布了新的文献求助20
15秒前
16秒前
17秒前
dxy完成签到 ,获得积分20
20秒前
两天xx发布了新的文献求助10
20秒前
sss完成签到,获得积分10
21秒前
21秒前
科研通AI5应助神仙水采纳,获得10
21秒前
微微发布了新的文献求助10
22秒前
科研通AI5应助是龙龙呀采纳,获得10
23秒前
Werner发布了新的文献求助30
24秒前
24秒前
26秒前
sfy66666完成签到,获得积分10
27秒前
27秒前
27秒前
微微完成签到,获得积分10
28秒前
乐乐应助wwww采纳,获得10
28秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848639
求助须知:如何正确求助?哪些是违规求助? 3391461
关于积分的说明 10567609
捐赠科研通 3112070
什么是DOI,文献DOI怎么找? 1715046
邀请新用户注册赠送积分活动 825536
科研通“疑难数据库(出版商)”最低求助积分说明 775647