A Bayesian network model for predicting cardiovascular risk

贝叶斯网络 计算机科学 贝叶斯概率 风险分析(工程) 风险评估 机器学习 数据挖掘 人口 人工智能 数据科学 医学 计算机安全 环境卫生
作者
José M. Ordovás,David Rı́os Insua,Alejandro Santos‐Lozano,Alejandro Lucía,A. Torres,A. Kosgodagan,Jose Manuel Camacho
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:231: 107405-107405 被引量:9
标识
DOI:10.1016/j.cmpb.2023.107405
摘要

Cardiovascular diseases are the leading death cause in Europe and entail large treatment costs. Cardiovascular risk prediction is crucial for the management and control of cardiovascular diseases. Based on a Bayesian network built from a large population database and expert judgment, this work studies interrelations between cardiovascular risk factors, emphasizing the predictive assessment of medical conditions, and providing a computational tool to explore and hypothesize such interrelations.We implement a Bayesian network model that considers modifiable and non-modifiable cardiovascular risk factors as well as related medical conditions. Both the structure and the probability tables in the underlying model are built using a large dataset collected from annual work health assessments as well as expert information, with uncertainty characterized through posterior distributions.The implemented model allows for making inferences and predictions about cardiovascular risk factors. The model can be utilized as a decision- support tool to suggest diagnosis, treatment, policy, and research hypothesis. The work is complemented with a free software implementing the model for practitioners' use.Our implementation of the Bayesian network model facilitates answering public health, policy, diagnosis, and research questions concerning cardiovascular risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
mirrovo发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
小小完成签到,获得积分10
2秒前
一一完成签到,获得积分10
2秒前
lay发布了新的文献求助10
5秒前
风起完成签到,获得积分10
6秒前
无奈醉柳完成签到 ,获得积分10
6秒前
Miuca发布了新的文献求助10
6秒前
婷你说发布了新的文献求助10
7秒前
7秒前
8秒前
98484应助向往采纳,获得10
8秒前
郝出站完成签到,获得积分10
9秒前
Newky完成签到,获得积分10
9秒前
9秒前
洁净雅容完成签到,获得积分10
9秒前
11秒前
Newky发布了新的文献求助10
11秒前
ZC发布了新的文献求助10
12秒前
王科研发布了新的文献求助10
12秒前
帕丁顿发布了新的文献求助10
12秒前
12秒前
妖风完成签到,获得积分10
12秒前
张张发布了新的文献求助10
14秒前
14秒前
猪猪hero应助weiwei04314采纳,获得10
16秒前
smile完成签到 ,获得积分10
17秒前
山城小丸发布了新的文献求助10
17秒前
CipherSage应助婷你说采纳,获得10
17秒前
谦让的半山完成签到 ,获得积分10
18秒前
忧郁雪糕发布了新的文献求助10
18秒前
旺旺饼干发布了新的文献求助10
18秒前
黄黄完成签到 ,获得积分10
19秒前
mnaq完成签到,获得积分10
19秒前
pzh应助zxc采纳,获得20
19秒前
科研通AI5应助shanshanlaichi采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793494
求助须知:如何正确求助?哪些是违规求助? 3338382
关于积分的说明 10289505
捐赠科研通 3054903
什么是DOI,文献DOI怎么找? 1676204
邀请新用户注册赠送积分活动 804239
科研通“疑难数据库(出版商)”最低求助积分说明 761789