甘油
化学
纳米孔
二羟丙酮
劈理(地质)
甘油醛
电化学
键裂
生物柴油生产
生物柴油
光化学
催化作用
有机化学
电极
物理化学
脱氢酶
材料科学
酶
复合材料
断裂(地质)
作者
Adam M. Hilbrands,McKenna K. Goetz,Kyoung‐Shin Choi
摘要
Production of biodiesel generates glycerol as a 10 wt% byproduct. Therefore, efficient and selective glycerol upgrading is critical for the sustainable production of biodiesel as well as for the production of chemicals from renewable feedstocks. In this study, the photoelectrochemical glycerol oxidation reaction (GOR) was investigated using a nanoporous BiVO4 photoanode in pH 9.3 and pH 2 buffer solutions. In both solutions, glycolaldehyde (GCAD), a C2 species, was the major product, which has never been the major product in any previous electrochemical or photoelectrochemical GOR study. To produce GCAD from the C3 species glycerol, C-C cleavage should occur to produce C2 and C1 species with a 1:1 ratio. Intriguingly, our results show that, during photoelectrochemical GOR on BiVO4, more GCAD is produced than can be explained by simple C-C cleavage, meaning that GCAD is also produced from C-C coupling of two C1 species produced from C-C cleavage. This is equivalent to converting two glycerol molecules to three GCAD molecules, which offers an extraordinary way to maximize GCAD production. To gain further insight into the nature of this unprecedented C-C coupling during GOR, photoelectrochemical oxidation of intermediate oxidation products (glyceraldehyde and 1,3-dihydroxyacetone) and glycerol-1,3-13C2 was compared to that of standard glycerol. Photoelectrochemical GOR was also compared with electrochemical GOR on BiVO4 to interrogate whether light is critical for the observed C-C coupling. Results obtained from comprehensive control experiments revealed critical information about C-C cleavage and C-C coupling during GOR on BiVO4.
科研通智能强力驱动
Strongly Powered by AbleSci AI