An integrated machine learning framework with uncertainty quantification for three-dimensional lithological modeling from multi-source geophysical data and drilling data

机器学习 人工智能 超参数 不确定度量化 钻探 背景(考古学) 地球物理学 地质学 贝叶斯推理 计算机科学 贝叶斯概率 工程类 古生物学 机械工程
作者
Zhiqiang Zhang,Gongwen Wang,Emmanuel John M. Carranza,Chong Liu,Junjian Li,Chao Fu,Xinxing Liu,Chao Chen,Jie Fan,Yulong Dong
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:324: 107255-107255 被引量:3
标识
DOI:10.1016/j.enggeo.2023.107255
摘要

Nowadays, it is commonplace for geological surveys to integrate multi-source geophysical data and drilling data in order to construct three-dimensional (3D) lithological models. In this context, manual translation of complex geophysical data into parameters used for 3D lithological modeling is challenging. Machine learning has recently shown great potential in 3D lithological modeling. However, the performance of machine learning algorithm is influenced by the imbalance in number of categories of lithological samples. In addition, the uncertainty associated with 3D lithological modeling by machine learning has rarely been quantified. This study presents a novel integrated machine learning framework to address the imbalance issue and to quantify uncertainty in 3D lithological modeling. As its novelty, our integrated machine learning framework can subdivide total uncertainty into aleatoric and epistemic uncertainties in the 3D lithological modeling procedure by stochastic gradient Langevin boosting. Another innovation of this study is the use of Bayesian hyperparameter optimization for automatic tuning of hyperparameters of the integrated machine learning framework. The 3D lithological and uncertainty modeling case study in the Jiaojia–Sanshandao gold district of China demonstrated the superiority of our proposed integrated machine learning framework. The proposed framework has great potential in integrating multi-source geophysical and drilling data for 3D lithological and uncertainty modeling in engineering geology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HF7发布了新的文献求助10
1秒前
3秒前
可爱的函函应助无限芝麻采纳,获得10
3秒前
11完成签到,获得积分10
4秒前
5秒前
爱喝水完成签到,获得积分10
5秒前
5秒前
养恩完成签到,获得积分10
7秒前
阳光芫完成签到,获得积分10
7秒前
HF7完成签到,获得积分10
7秒前
赞zan发布了新的文献求助10
8秒前
hhh发布了新的文献求助30
9秒前
坚定自信完成签到,获得积分10
9秒前
10秒前
陆小果完成签到,获得积分10
10秒前
852应助doubleshake采纳,获得10
12秒前
14秒前
14秒前
14秒前
果实发布了新的文献求助10
15秒前
杰哥完成签到,获得积分10
15秒前
赞zan完成签到,获得积分10
15秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
daisies应助科研通管家采纳,获得20
16秒前
Orange应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
圩垸应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
RNNNLL应助科研通管家采纳,获得10
17秒前
17秒前
飘落发布了新的文献求助10
19秒前
20秒前
20秒前
wwx发布了新的文献求助10
20秒前
shine_zz完成签到,获得积分10
21秒前
懵懂的子骞完成签到 ,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914807
求助须知:如何正确求助?哪些是违规求助? 3460124
关于积分的说明 10909958
捐赠科研通 3186923
什么是DOI,文献DOI怎么找? 1761639
邀请新用户注册赠送积分活动 852220
科研通“疑难数据库(出版商)”最低求助积分说明 793226