Selective incorporation of inorganic solid-electrolyte interphase into carbon-coated silicon nanoparticle anode for lithium-ion batteries with improved cyclic stability

阳极 电解质 锂(药物) 材料科学 碳纤维 阴极 化学工程 涂层 电池(电) 锂离子电池 纳米技术 电极 化学 复合材料 冶金 复合数 工程类 内分泌学 物理 物理化学 功率(物理) 医学 量子力学
作者
Ki Heon Kim,Myeong Gyun Nam,Min Jun Kim,Pil J. Yoo
出处
期刊:Carbon [Elsevier BV]
卷期号:210: 118056-118056 被引量:15
标识
DOI:10.1016/j.carbon.2023.118056
摘要

Prelithiation is a crucial strategy for scalable lithium-ion batteries (LIB) that not only compensates for lithium (Li) loss but also prevents the formation of undesired solid-electrolyte interphase (SEI) layer. Depending on how the SEI is cultivated, it may incur either a positive or negative effect on the battery performance. In this work, we present a means of selectively incorporating inorganic SEI via chemical prelithiation and subsequent vacuum drying processes in ambient atmospheric conditions. The SEI layer is then used as a filler to reinforce the carbon layer coating silicon anode material in LIBs. Our employed pore-filling strategy effectively reduces the specific surface area and increases the mechanical strength of the carbon-coated silicon anode, resulting in simultaneous improvements in specific capacity and cell stability. In particular, Li-ions incorporated into nanovoids within the carbon layer are spontaneously converted to lithium hydroxide (LiOH) upon exposure to ambient moisture and then crystallize through vacuum drying. In addition, due to the increased compressive strength provided by the mechanical reinforcement effect in the LiOH-incorporated carbon coating layer, the cyclic stability of the cells increases from 29.2% to 76.5% after 100 cycles in comparison to bare silicon anodes. The rate capability is also improved by the high Li-ion diffusivity in LiOH. Therefore, these findings suggest that this approach to controlling the phase of SEI may have implications for the development of next-generation Li-ion batteries with high energy density and operational stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ah_junlei完成签到,获得积分10
刚刚
刚刚
鱼儿完成签到,获得积分10
1秒前
2秒前
3秒前
自由以亦完成签到,获得积分10
3秒前
JXDYYZK完成签到,获得积分10
3秒前
七安给七安的求助进行了留言
4秒前
wxZeng完成签到,获得积分10
4秒前
细雨听风完成签到,获得积分10
5秒前
亦玉完成签到,获得积分10
5秒前
江川锦鲤完成签到,获得积分10
5秒前
自然向彤发布了新的文献求助10
5秒前
abc完成签到 ,获得积分10
5秒前
我爱科研发布了新的文献求助10
6秒前
xc完成签到,获得积分10
6秒前
Daisypharma完成签到,获得积分10
6秒前
Bioflying完成签到,获得积分10
6秒前
BBA完成签到 ,获得积分10
6秒前
米乐时光完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助30
7秒前
项听蓉完成签到,获得积分10
7秒前
aaa完成签到 ,获得积分10
7秒前
11秒前
闫栋完成签到 ,获得积分10
12秒前
威威完成签到,获得积分10
12秒前
叮咚jingle完成签到,获得积分10
13秒前
冰冰双双完成签到,获得积分10
13秒前
完美世界应助科科可乐采纳,获得30
13秒前
安安完成签到 ,获得积分10
14秒前
王晓完成签到,获得积分10
15秒前
沉默的婴完成签到 ,获得积分10
15秒前
15秒前
yingzaifeixiang完成签到 ,获得积分10
15秒前
甜美的青柏完成签到,获得积分10
16秒前
Jzhang完成签到,获得积分10
17秒前
落叶的季节完成签到,获得积分10
18秒前
林林林林完成签到,获得积分10
18秒前
土豆条子完成签到,获得积分10
19秒前
GOD伟完成签到,获得积分10
19秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Research on the design of hear-through controllers for active noise control headphones based on cascade biquad filters considering different directions of sound arrivals 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872039
求助须知:如何正确求助?哪些是违规求助? 3414026
关于积分的说明 10687348
捐赠科研通 3138464
什么是DOI,文献DOI怎么找? 1731707
邀请新用户注册赠送积分活动 834943
科研通“疑难数据库(出版商)”最低求助积分说明 781493