亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust prediction of colorectal cancer via gut microbiome 16S rRNA sequencing data

微生物群 随机森林 人体微生物群 人工智能 机器学习 结直肠癌 计算机科学 计算生物学 基因组 分类器(UML) 生物 人类微生物组计划 生物信息学 癌症 遗传学 基因
作者
Annamaria Porreca,Eliana Ibrahimi,Fabrizio Maturo,Laura Judith Marcos-Zambrano,Melisa Meto,Marta B. Lopes
出处
期刊:Journal of Medical Microbiology [Microbiology Society]
卷期号:73 (10)
标识
DOI:10.1099/jmm.0.001903
摘要

Introduction. The study addresses the challenge of utilizing human gut microbiome data for the early detection of colorectal cancer (CRC). The research emphasizes the potential of using machine learning techniques to analyze complex microbiome datasets, providing a non-invasive approach to identifying CRC-related microbial markers. Hypothesis/Gap Statement. The primary hypothesis is that a robust machine learning-based analysis of 16S rRNA microbiome data can identify specific microbial features that serve as effective biomarkers for CRC detection, overcoming the limitations of classical statistical models in high-dimensional settings. Aim. The primary objective of this study is to explore and validate the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for colorectal cancer (CRC) detection and progression. The focus is on developing a classifier that effectively predicts the presence of CRC and normal samples based on the analysis of three previously published faecal 16S rRNA sequencing datasets. Methodology. To achieve the aim, various machine learning techniques are employed, including random forest (RF), recursive feature elimination (RFE) and a robust correlation-based technique known as the fuzzy forest (FF). The study utilizes these methods to analyse the three datasets, comparing their performance in predicting CRC and normal samples. The emphasis is on identifying the most relevant microbial features (taxa) associated with CRC development via partial dependence plots, i.e. a machine learning tool focused on explainability, visualizing how a feature influences the predicted outcome. Results. The analysis of the three faecal 16S rRNA sequencing datasets reveals the consistent and superior predictive performance of the FF compared to the RF and RFE. Notably, FF proves effective in addressing the correlation problem when assessing the importance of microbial taxa in explaining the development of CRC. The results highlight the potential of the human microbiome as a non-invasive means to detect CRC and underscore the significance of employing FF for improved predictive accuracy. Conclusion. In conclusion, this study underscores the limitations of classical statistical techniques in handling high-dimensional information such as human microbiome data. The research demonstrates the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for CRC detection. Applying machine learning techniques, particularly the FF, is a promising approach for building a classifier to predict CRC and normal samples. The findings advocate for integrating FF to overcome the challenges associated with correlation when identifying crucial microbial features linked to CRC development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rpe完成签到,获得积分10
8秒前
liuwei发布了新的文献求助20
19秒前
桐桐应助林钰浩采纳,获得10
23秒前
友好冥王星完成签到 ,获得积分10
26秒前
科研通AI5应助lstj6675采纳,获得10
26秒前
29秒前
7尔阿婆完成签到,获得积分10
31秒前
张晓祁完成签到,获得积分10
31秒前
思源应助iu1392采纳,获得30
32秒前
脑洞疼应助SimmonsLI采纳,获得10
35秒前
科研通AI2S应助昭昭昭昭采纳,获得10
35秒前
小土豆完成签到 ,获得积分10
36秒前
奇迹探索者完成签到,获得积分10
38秒前
Omni完成签到,获得积分10
40秒前
zz完成签到,获得积分10
43秒前
yueying完成签到,获得积分10
47秒前
48秒前
konosuba完成签到,获得积分0
50秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
KaK完成签到 ,获得积分10
51秒前
52秒前
尼克胡完成签到 ,获得积分10
53秒前
lstj6675发布了新的文献求助10
55秒前
林钰浩发布了新的文献求助10
57秒前
科研通AI5应助jkdajsk采纳,获得10
58秒前
林钰浩完成签到,获得积分10
1分钟前
1分钟前
尼克胡关注了科研通微信公众号
1分钟前
1分钟前
lmy发布了新的文献求助10
1分钟前
SimmonsLI发布了新的文献求助10
1分钟前
1分钟前
可爱的函函应助lindalin采纳,获得10
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
小张同学完成签到 ,获得积分10
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
lmy完成签到,获得积分10
1分钟前
iu1392发布了新的文献求助30
1分钟前
江姜酱先生完成签到,获得积分10
1分钟前
纯情的无色完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798442
求助须知:如何正确求助?哪些是违规求助? 3343845
关于积分的说明 10317839
捐赠科研通 3060544
什么是DOI,文献DOI怎么找? 1679588
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296