SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction

下部结构 计算机科学 人工神经网络 人工智能 图形 模式识别(心理学) 机器学习 理论计算机科学 结构工程 工程类
作者
Yuansheng Liu,Xinyan Xia,Yongshun Gong,Bosheng Song,Xiangxiang Zeng
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:157: 102983-102983 被引量:1
标识
DOI:10.1016/j.artmed.2024.102983
摘要

Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds, thereby mitigating labor and financial losses. While graph neural networks (GNNs) have been applied to DTA, existing GNNs have limitations in effectively extracting substructural features across various sizes. Functional groups play a crucial role in modulating molecular properties, but existing GNNs struggle with feature extraction from certain motifs due to scale mismatches. Additionally, sequence-based models for target proteins lack the integration of structural information. To address these limitations, we present SSR-DTA, a multi-layer graph network capable of adapting to diverse structural sizes, which can extract richer biological features, thereby improving the robustness and accuracy of predictions. Multi-layer GNNs enable the capture of molecular motifs across different scales, ranging from atomic to macrocyclic motifs. Furthermore, we introduce BiGNN to simultaneously learn sequence and structural information. Sequence information corresponds to the primary structure of proteins, while graph information represents the tertiary structure. BiGNN assimilates richer information compared to sequence-based methods while mitigating the impact of errors from predicted structures, resulting in more accurate predictions. Through rigorous experimental evaluations conducted on four benchmark datasets, we demonstrate the superiority of SSR-DTA over state-of-the-art models. Particularly, in comparison to state-of-the-art models, SSR-DTA demonstrates an impressive 20% reduction in mean squared error on the Davis dataset and a 5% reduction on the KIBA dataset, underscoring its potential as a valuable tool for advancing DTA prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助梅雨季来信采纳,获得10
刚刚
LV完成签到 ,获得积分10
1秒前
迷路芝麻完成签到,获得积分10
2秒前
小高的茯苓糕完成签到,获得积分10
2秒前
airtermis完成签到 ,获得积分10
2秒前
辞清完成签到 ,获得积分10
5秒前
6秒前
无花果应助自觉觅柔采纳,获得10
6秒前
YK完成签到,获得积分10
9秒前
9秒前
11秒前
Ava应助科研通管家采纳,获得10
12秒前
夏来应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
老姚完成签到,获得积分10
13秒前
凌儿响叮当完成签到 ,获得积分10
14秒前
yiyao完成签到,获得积分10
17秒前
林结衣完成签到,获得积分10
18秒前
19秒前
平淡尔琴完成签到,获得积分10
19秒前
刘歌完成签到 ,获得积分10
20秒前
22秒前
King完成签到,获得积分10
22秒前
自觉觅柔发布了新的文献求助10
22秒前
ouyang完成签到 ,获得积分10
23秒前
fanfan完成签到 ,获得积分10
25秒前
天tian完成签到,获得积分10
26秒前
王十二完成签到 ,获得积分10
26秒前
ZHDNCG完成签到,获得积分10
27秒前
小柒柒完成签到,获得积分10
28秒前
28秒前
小小aa16完成签到,获得积分10
29秒前
科研螺丝完成签到 ,获得积分10
29秒前
jinggaier完成签到 ,获得积分10
29秒前
黑苹果完成签到,获得积分10
30秒前
lyy完成签到 ,获得积分10
31秒前
sjx1116完成签到 ,获得积分10
31秒前
33秒前
自觉觅柔完成签到,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359404
关于积分的说明 10402536
捐赠科研通 3077257
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743