Squeezed dual-comb spectroscopy

光谱学 对偶(语法数字) 物理 材料科学 语言学 哲学 量子力学
作者
Daniel I. Herman,Mathieu Walsh,Molly Kate Kreider,Noah Lordi,Eugene Tsao,Alexander J. Lind,Matthew Heyrich,Joshua Combes,Jérôme Genest,Scott A. Diddams
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2408.16688
摘要

Laser spectroscopy and interferometry have provided an unparalleled view into the fundamental nature of matter and the universe through ultra-precise measurements of atomic transition frequencies and gravitational waves. Optical frequency combs have expanded metrology capabilities by phase-coherently bridging radio frequency and optical domains to enable traceable high-resolution spectroscopy across bandwidths greater than hundreds of terahertz. However, quantum mechanics limits the measurement precision achievable with laser frequency combs and traditional laser sources, ultimately impacting fundamental interferometry and spectroscopy. Squeezing the distribution of quantum noise to enhance measurement precision of either the amplitude or phase quadrature of an optical field leads to significant measurement improvements with continuous wave lasers. In this work, we generate bright amplitude-squeezed frequency comb light and apply it to molecular spectroscopy using interferometry that leverages the high-speed and broad spectral coverage of the dual-comb technique. Using the Kerr effect in nonlinear optical fiber, the amplitude quadrature of a frequency comb centered at 1560 nm is squeezed by >3 dB over a 2.5 THz of bandwidth that includes 2500 comb teeth spaced by 1 GHz. Interferometry with a second coherent state frequency comb yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio (SNR) nearly 3 dB beyond the shot noise limit, taking full metrological advantage of the amplitude squeezing when the electrical noise floor is considered. The quantum noise reduction leads to a two-fold quantum speedup in the determination of gas concentration, with impact for fast, broadband, and high SNR ratio measurements of multiple species in dynamic chemical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悬铃木发布了新的文献求助10
1秒前
soapffz完成签到,获得积分10
2秒前
5秒前
5秒前
活力亦瑶发布了新的文献求助10
6秒前
zhangnjfu发布了新的文献求助10
8秒前
9秒前
Akim应助彭于晏采纳,获得10
9秒前
wenlin发布了新的文献求助10
11秒前
13秒前
安详的冰凡完成签到 ,获得积分10
13秒前
jj完成签到,获得积分10
14秒前
优雅阑悦发布了新的文献求助10
15秒前
huwan发布了新的文献求助10
16秒前
NCS完成签到,获得积分10
18秒前
开放筝完成签到,获得积分10
20秒前
21秒前
华卷式完成签到,获得积分10
23秒前
23秒前
住在魔仙堡的鱼完成签到 ,获得积分10
23秒前
调皮的千万完成签到,获得积分10
23秒前
大个应助LEON采纳,获得10
23秒前
超帅的水壶完成签到,获得积分10
25秒前
25秒前
25秒前
开放筝发布了新的文献求助10
26秒前
隐形曼青应助优雅阑悦采纳,获得10
26秒前
负责念梦发布了新的文献求助10
27秒前
脑洞疼应助彭于晏采纳,获得10
28秒前
29秒前
所所应助寒冷的白萱采纳,获得10
31秒前
wang完成签到,获得积分10
33秒前
英俊的铭应助李老头采纳,获得10
34秒前
35秒前
Evelyn0703完成签到,获得积分10
35秒前
大力云朵完成签到,获得积分10
36秒前
43秒前
Hello应助飘逸的傲霜采纳,获得10
43秒前
彭于晏应助彭于晏采纳,获得10
43秒前
44秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899492
求助须知:如何正确求助?哪些是违规求助? 3444172
关于积分的说明 10833526
捐赠科研通 3169005
什么是DOI,文献DOI怎么找? 1750925
邀请新用户注册赠送积分活动 846370
科研通“疑难数据库(出版商)”最低求助积分说明 789170