空格(标点符号)
背景(考古学)
心理学
语言学
衔接(社会学)
意义(存在)
词(群论)
计算机科学
大脑活动与冥想
神经科学
脑电图
哲学
历史
考古
政治
政治学
法学
心理治疗师
作者
Zaid Zada,Ariel Goldstein,Sebastian Michelmann,Erez Simony,Amy Price,Liat Hasenfratz,Emily Barham,Asieh Zadbood,Werner Doyle,Daniel Friedman,Patricia Dugan,Lucía Melloni,Sasha Devore,Adeen Flinker,Orrin Devinsky,Samuel A. Nastase,Uri Hasson
出处
期刊:Neuron
[Cell Press]
日期:2024-08-02
卷期号:112 (18): 3211-3222.e5
被引量:16
标识
DOI:10.1016/j.neuron.2024.06.025
摘要
Effective communication hinges on a mutual understanding of word meaning in different contexts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We developed a model-based coupling framework that aligns brain activity in both speaker and listener to a shared embedding space from a large language model (LLM). The context-sensitive LLM embeddings allow us to track the exchange of linguistic information, word by word, from one brain to another in natural conversations. Linguistic content emerges in the speaker's brain before word articulation and rapidly re-emerges in the listener's brain after word articulation. The contextual embeddings better capture word-by-word neural alignment between speaker and listener than syntactic and articulatory models. Our findings indicate that the contextual embeddings learned by LLMs can serve as an explicit numerical model of the shared, context-rich meaning space humans use to communicate their thoughts to one another.
科研通智能强力驱动
Strongly Powered by AbleSci AI