Phase quantification using deep neural network processing of XRD patterns

计算机科学 结构精修 人工神经网络 鉴定(生物学) 算法 人工智能 同步加速器 数据挖掘 衍射 机器学习 物理 光学 植物 生物
作者
Titouan Simonnet,Sylvain Grangeon,Francis Claret,Nicolas Maubec,Mame Diarra Fall,Rachid Harba,Bruno Galerne
出处
期刊:IUCrJ [International Union of Crystallography]
卷期号:11 (5): 859-870 被引量:2
标识
DOI:10.1107/s2052252524006766
摘要

Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample. This is generally carried out manually, and this task becomes extremely long or virtually impossible in the case of very large datasets such as those from synchrotron X-ray diffraction computed tomography. To circumvent this issue, this article proposes a novel neural network (NN) method for automating phase identification and quantification. An XRD pattern calculation code was used to generate large datasets of synthetic data that are used to train the NN. This approach offers significant advantages, including the ability to construct databases with a substantial number of XRD patterns and the introduction of extensive variability into these patterns. To enhance the performance of the NN, a specifically designed loss function for proportion inference was employed during the training process, offering improved efficiency and stability compared with traditional functions. The NN, trained exclusively with synthetic data, proved its ability to identify and quantify mineral phases on synthetic and real XRD patterns. Trained NN errors were equal to 0.5% for phase quantification on the synthetic test set, and 6% on the experimental data, in a system containing four phases of contrasting crystal structures (calcite, gibbsite, dolomite and hematite). The proposed method is freely available on GitHub and allows for major advances since it can be applied to any dataset, regardless of the mineral phases present.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
加减乘除发布了新的文献求助10
1秒前
Achuia完成签到,获得积分10
1秒前
魔魔胡胡胡萝卜完成签到,获得积分10
2秒前
Priscilla完成签到,获得积分10
2秒前
2秒前
热情的元芹完成签到,获得积分10
2秒前
3秒前
3秒前
TSK完成签到,获得积分10
4秒前
小刘发布了新的文献求助10
4秒前
李爱国应助漂亮茹妖采纳,获得30
5秒前
章鱼饭发布了新的文献求助10
6秒前
mirayq发布了新的文献求助10
7秒前
kk发布了新的文献求助10
7秒前
直率的盼曼完成签到,获得积分10
8秒前
热情的明轩完成签到,获得积分10
10秒前
打打应助shamy夫妇采纳,获得10
11秒前
11秒前
你怎么讨厌完成签到,获得积分10
12秒前
CodeCraft应助桐桐采纳,获得40
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Owen应助ddz采纳,获得10
14秒前
最终幻想发布了新的文献求助10
14秒前
桃子完成签到 ,获得积分10
14秒前
14秒前
体贴的小蝴蝶完成签到,获得积分20
15秒前
xt应助motidfox采纳,获得20
16秒前
16秒前
曾经可乐完成签到 ,获得积分10
16秒前
爆米花应助wise111采纳,获得10
16秒前
eternity136发布了新的文献求助10
17秒前
XiaobaoWang发布了新的文献求助10
17秒前
1028181661发布了新的文献求助10
17秒前
映寒完成签到,获得积分10
18秒前
wanci应助chinaproteome采纳,获得10
19秒前
susu发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4309025
求助须知:如何正确求助?哪些是违规求助? 3830825
关于积分的说明 11986535
捐赠科研通 3471050
什么是DOI,文献DOI怎么找? 1903236
邀请新用户注册赠送积分活动 950538
科研通“疑难数据库(出版商)”最低求助积分说明 852441