Phase quantification using deep neural network processing of XRD patterns

计算机科学 结构精修 人工神经网络 鉴定(生物学) 算法 人工智能 同步加速器 数据挖掘 衍射 机器学习 物理 光学 植物 生物
作者
Titouan Simonnet,Sylvain Grangeon,Francis Claret,Nicolas Maubec,Mame Diarra Fall,Rachid Harba,Bruno Galerne
出处
期刊:IUCrJ [International Union of Crystallography]
卷期号:11 (5): 859-870 被引量:3
标识
DOI:10.1107/s2052252524006766
摘要

Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample. This is generally carried out manually, and this task becomes extremely long or virtually impossible in the case of very large datasets such as those from synchrotron X-ray diffraction computed tomography. To circumvent this issue, this article proposes a novel neural network (NN) method for automating phase identification and quantification. An XRD pattern calculation code was used to generate large datasets of synthetic data that are used to train the NN. This approach offers significant advantages, including the ability to construct databases with a substantial number of XRD patterns and the introduction of extensive variability into these patterns. To enhance the performance of the NN, a specifically designed loss function for proportion inference was employed during the training process, offering improved efficiency and stability compared with traditional functions. The NN, trained exclusively with synthetic data, proved its ability to identify and quantify mineral phases on synthetic and real XRD patterns. Trained NN errors were equal to 0.5% for phase quantification on the synthetic test set, and 6% on the experimental data, in a system containing four phases of contrasting crystal structures (calcite, gibbsite, dolomite and hematite). The proposed method is freely available on GitHub and allows for major advances since it can be applied to any dataset, regardless of the mineral phases present.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sky发布了新的文献求助20
刚刚
醉熏的以云完成签到 ,获得积分10
1秒前
chuizi90完成签到,获得积分10
1秒前
小羊打嗝发布了新的文献求助20
2秒前
大气白翠完成签到,获得积分10
2秒前
2秒前
ID发布了新的文献求助10
2秒前
mczhu完成签到,获得积分10
2秒前
小仙女完成签到,获得积分10
3秒前
砂糖橘完成签到,获得积分10
3秒前
cpl完成签到,获得积分10
3秒前
3秒前
3秒前
lily完成签到,获得积分10
3秒前
地平完成签到,获得积分10
4秒前
4秒前
lmj完成签到,获得积分10
4秒前
ZZY完成签到,获得积分10
4秒前
Steven完成签到 ,获得积分10
4秒前
duang完成签到,获得积分10
5秒前
ding应助隐形的baby采纳,获得10
5秒前
昨夜雨疏风骤完成签到,获得积分10
5秒前
azen完成签到,获得积分20
5秒前
5秒前
Criminology34应助江南第八采纳,获得10
5秒前
难过从云完成签到,获得积分10
6秒前
6秒前
开心绿柳完成签到,获得积分0
6秒前
Mint完成签到 ,获得积分10
6秒前
littleblack发布了新的文献求助10
6秒前
6秒前
等待晓筠完成签到,获得积分10
7秒前
FR完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
胖子完成签到,获得积分10
8秒前
8秒前
lige完成签到 ,获得积分10
8秒前
honeybee完成签到,获得积分10
8秒前
xdedd发布了新的文献求助20
8秒前
刘子琪发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570