已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Innovative approaches to atrial fibrillation prediction: should polygenic scores and machine learning be implemented in clinical practice?

心房颤动 临床实习 计算机科学 机器学习 人工智能 内科学 医学 物理疗法
作者
Adrian Petzl,Gilbert Jabbour,Julia Cadrin‐Tourigny,Helmut Pürerfellner,Laurent Macle,Paul Khairy,Robert Avram,Rafik Tadros
出处
期刊:Europace [Oxford University Press]
卷期号:26 (8) 被引量:12
标识
DOI:10.1093/europace/euae201
摘要

Atrial fibrillation (AF) prediction and screening are of important clinical interest because of the potential to prevent serious adverse events. Devices capable of detecting short episodes of arrhythmia are now widely available. Although it has recently been suggested that some high-risk patients with AF detected on implantable devices may benefit from anticoagulation, long-term management remains challenging in lower-risk patients and in those with AF detected on monitors or wearable devices as the development of clinically meaningful arrhythmia burden in this group remains unknown. Identification and prediction of clinically relevant AF is therefore of unprecedented importance to the cardiologic community. Family history and underlying genetic markers are important risk factors for AF. Recent studies suggest a good predictive ability of polygenic risk scores, with a possible additive value to clinical AF prediction scores. Artificial intelligence, enabled by the exponentially increasing computing power and digital data sets, has gained traction in the past decade and is of increasing interest in AF prediction using a single or multiple lead sinus rhythm electrocardiogram. Integrating these novel approaches could help predict AF substrate severity, thereby potentially improving the effectiveness of AF screening and personalizing the management of patients presenting with conditions such as embolic stroke of undetermined source or subclinical AF. This review presents current evidence surrounding deep learning and polygenic risk scores in the prediction of incident AF and provides a futuristic outlook on possible ways of implementing these modalities into clinical practice, while considering current limitations and required areas of improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huang发布了新的文献求助10
1秒前
科研通AI5应助典雅的蜡烛采纳,获得10
4秒前
suan完成签到 ,获得积分10
7秒前
此时此刻完成签到 ,获得积分10
8秒前
充电宝应助尛瞐慶成采纳,获得10
10秒前
wu完成签到,获得积分10
12秒前
星辰大海应助iu1392采纳,获得10
12秒前
上官若男应助iu1392采纳,获得10
12秒前
kenti2023完成签到 ,获得积分10
13秒前
喝儿何完成签到,获得积分10
13秒前
金顺完成签到,获得积分10
13秒前
JamesPei应助goodgay133采纳,获得10
17秒前
19秒前
Owen应助怡然的便当采纳,获得10
19秒前
21秒前
22秒前
碗在水中央完成签到 ,获得积分0
22秒前
尛瞐慶成发布了新的文献求助10
24秒前
不厌发布了新的文献求助10
25秒前
santo发布了新的文献求助10
26秒前
完美世界应助无问采纳,获得10
26秒前
喜悦的板凳完成签到 ,获得积分10
27秒前
30秒前
尛瞐慶成完成签到,获得积分10
30秒前
隐形曼青应助iu1392采纳,获得10
33秒前
赘婿应助iu1392采纳,获得10
33秒前
希望天下0贩的0应助iu1392采纳,获得10
33秒前
领导范儿应助iu1392采纳,获得10
33秒前
Orange应助iu1392采纳,获得10
33秒前
FashionBoy应助iu1392采纳,获得10
33秒前
科研通AI2S应助iu1392采纳,获得10
33秒前
无花果应助iu1392采纳,获得10
33秒前
桐桐应助iu1392采纳,获得10
33秒前
无花果应助iu1392采纳,获得10
33秒前
34秒前
科研通AI2S应助sy采纳,获得10
35秒前
关关完成签到 ,获得积分10
38秒前
mmz完成签到 ,获得积分10
39秒前
无问发布了新的文献求助10
40秒前
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798374
求助须知:如何正确求助?哪些是违规求助? 3343792
关于积分的说明 10317687
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296