清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for Millimeter Wave Radar

计算机科学 点云 人工智能 雷达 计算机视觉 RGB颜色模型 水准点(测量) 遥感 雷达成像 极高频率 电信 地质学 大地测量学
作者
Anjun Chen,Xiangyu Wang,Shaohao Zhu,Yanxu Li,Jiming Chen,Qi Ye
标识
DOI:10.1145/3503161.3548262
摘要

Millimeter Ware (mmWave) Radar is gaining popularity as it can work in adverse environments like smoke, rain, snow, poor lighting, etc. Prior work has explored the possibility of reconstructing 3D skeletons or meshes from the noisy and sparse mmWare Radar signals. However, it is unclear how accurately we can reconstruct the 3D body from the mmWave signals across scenes and how it performs compared with cameras, which are important aspects needed to be considered when either using mmWave radars alone or combining them with cameras. To answer these questions, an automatic 3D body annotation system is first designed and built up with multiple sensors to collect a large-scale dataset. The dataset consists of synchronized and calibrated mmWave radar point clouds and RGB(D) images in different scenes and skeleton/mesh annotations for humans in the scenes. With this dataset, we train state-of-the-art methods with inputs from different sensors and test them in various scenarios. The results demonstrate that 1) despite the noise and sparsity of the generated point clouds, the mmWave radar can achieve better reconstruction accuracy than the RGB camera but worse than the depth camera; 2) the reconstruction from the mmWave radar is affected by adverse weather conditions moderately while the RGB(D) camera is severely affected. Further, analysis of the dataset and the results shadow insights on improving the reconstruction from the mmWave radar and the combination of signals from different sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoe发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助20
11秒前
Zoe完成签到,获得积分10
17秒前
40秒前
48秒前
虚幻念寒完成签到 ,获得积分10
1分钟前
卢莹完成签到,获得积分10
1分钟前
木乙完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
脑洞疼应助Jonathan采纳,获得10
3分钟前
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
3分钟前
汪汪淬冰冰完成签到,获得积分10
3分钟前
SimonShaw完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
天玄发布了新的文献求助10
4分钟前
李健的小迷弟应助敏敏9813采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
宝宝爱洗脚完成签到,获得积分10
5分钟前
5分钟前
冷傲半邪完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
ruogu7完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389135
捐赠科研通 4512388
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459119
关于科研通互助平台的介绍 1432605