A Cooperative Multiagent Reinforcement Learning Framework for Droplet Routing in Digital Microfluidic Biochips

生物芯片 强化学习 数字微流体 布线(电子设计自动化) 计算机科学 过程(计算) 微流控 分布式计算 拓扑(电路) 人工智能 工程类 嵌入式系统 纳米技术 电润湿 材料科学 电压 电气工程 操作系统
作者
Chen Jiang,Rongquan Yang,Qi Xu,Hailong Yao,Tsung-Yi Ho,Bo Yuan
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 3007-3020 被引量:3
标识
DOI:10.1109/tcad.2022.3233019
摘要

Digital microfluidic biochips (DMFBs) have shown great advantages in automatically executing biochemical protocols through manipulating discrete nano/picoliter droplets which are transported in parallel to achieve high-throughput outcomes. However, because of electrode degradations, the droplet transportation may fail, causing incorrect fluidic operations. To perform safety-critical bio-protocols, the reliability of droplet transportation becomes an utmost concern for DMFBs. It has been shown by the previous works that a reliable transportation policy can be learned using reinforcement learning (RL)-based methods by capturing the underlying health conditions of electrodes and making online decisions. However, previous RL methods may fail to accomplish routing tasks with multiple droplets, because there is a lack of cooperation among different agents (each agent represents one droplet). To deal with this problem and scale RL methods to many droplets, this article proposes a new cooperative centralized learning and distributed execution multiagent RL (MARL) framework for droplet routing in DMFBs using value-decomposition networks (VDNs). Moreover, to speed up the training and decision process as well as apply our method in large biochips, we use a partial observation space where agents can only observe environment in a limited field of view (FOV) centered around themselves. Compared with the state-of-the-art approach, the superior performance of the proposed approach is demonstrated on different DMFBs in terms of success rate and average completion time. We also validate our method on large biochips (e.g., $\mathbf {50\times 50}$ DMFBs) with more droplets than state-of-the-art approach (e.g., ten droplets).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚两下子完成签到 ,获得积分10
刚刚
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
淡定从凝完成签到,获得积分10
3秒前
缥缈的砖头完成签到 ,获得积分10
4秒前
科目三应助新新采纳,获得10
6秒前
野性的白凡完成签到,获得积分10
6秒前
8秒前
10秒前
11秒前
skkr发布了新的文献求助10
11秒前
张YI发布了新的文献求助10
14秒前
Chenglong发布了新的文献求助10
14秒前
hky发布了新的文献求助10
16秒前
18秒前
Orange应助lynn采纳,获得10
19秒前
dyk完成签到,获得积分10
22秒前
23秒前
小孩015完成签到 ,获得积分10
25秒前
hky完成签到,获得积分10
27秒前
27秒前
27秒前
初雪完成签到,获得积分10
30秒前
31秒前
新新发布了新的文献求助10
32秒前
Ukiss发布了新的文献求助10
34秒前
lynn发布了新的文献求助10
35秒前
学术智子完成签到,获得积分10
36秒前
wanci应助junjun采纳,获得10
37秒前
peili完成签到,获得积分0
37秒前
science完成签到,获得积分10
38秒前
半分青蓝完成签到,获得积分10
40秒前
谷遇应助1234采纳,获得10
41秒前
43秒前
lynn完成签到,获得积分10
44秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802506
求助须知:如何正确求助?哪些是违规求助? 3348187
关于积分的说明 10336958
捐赠科研通 3064097
什么是DOI,文献DOI怎么找? 1682401
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 763997