Compound Knowledge Graph-Enabled AI Assistant for Accelerated Materials Discovery

计算机科学 领域知识 人工智能 数据科学 知识抽取
作者
Kareem S. Aggour,Andrew J. Detor,Alfredo Gabaldon,Varish Mulwad,Abha Moitra,Paul Cuddihy,Vijay S. Kumar
出处
期刊:Integrating materials and manufacturing innovation [Springer Nature]
卷期号:11 (4): 467-478 被引量:10
标识
DOI:10.1007/s40192-022-00286-z
摘要

Abstract Materials scientists are facing increasingly challenging multi-objective performance requirements to meet the needs of modern systems such as lighter-weight and more fuel-efficient aircraft engines, and higher heat and oxidation-resistant steam turbines. While so-called second wave statistical machine learning techniques are beginning to accelerate the materials development cycle, most materials science applications are data-deprived when compared to the vastness and complexity of the search space of possible solutions. In line with DARPA’s vision of third wave AI approaches, we believe a combination of data-driven statistical machine learning and domain knowledge will be required to achieve a true revolution in materials discovery. To that end, we envision and have begun reducing to practice a system that fuses three forms of knowledge—factual scientific knowledge, physics-based and/or data-driven analytical models, and domain expert knowledge—into a single ‘Compound Knowledge Graph’ in which contextual reasoning and adaptation can be performed to answer increasingly complex questions. We believe this Compound Knowledge Graph-based system can be the nucleus of a collaborative AI assistant that supports stateful natural language back-and-forth dialogs between materials scientists and the AI to accelerate the development and discovery of new materials. This paper details our vision, summarizes our progress to date on a steam turbine blade coating use case, and outlines our thoughts on the key challenges in making this vision a reality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aibing发布了新的文献求助10
刚刚
刚刚
qlmian发布了新的文献求助10
1秒前
dakjdia发布了新的文献求助10
2秒前
3秒前
3秒前
赘婿应助内向无春采纳,获得10
4秒前
一叶知秋应助ayaka采纳,获得10
4秒前
赘婿应助李金荣采纳,获得10
4秒前
5秒前
mouxq发布了新的文献求助10
5秒前
麻辣橙子完成签到,获得积分10
6秒前
6秒前
aaa发布了新的文献求助10
7秒前
传奇3应助berg采纳,获得10
7秒前
爱学习的马邓邓完成签到 ,获得积分10
7秒前
8秒前
科研通AI6应助冒如怿采纳,获得30
8秒前
你看完成签到,获得积分10
8秒前
Du发布了新的文献求助10
9秒前
AYN发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
KLAB发布了新的文献求助10
10秒前
Guo发布了新的文献求助30
11秒前
大模型应助zhangrongqi采纳,获得10
11秒前
科研通AI6应助qlmian采纳,获得10
11秒前
11秒前
亚米发布了新的文献求助10
11秒前
jianglan发布了新的文献求助10
13秒前
丘比特应助科研菜鸟采纳,获得10
13秒前
顺子呀完成签到,获得积分10
14秒前
研友_n0QYAZ完成签到 ,获得积分10
14秒前
14秒前
江起云完成签到,获得积分10
15秒前
15秒前
领导范儿应助小宋采纳,获得10
16秒前
18秒前
18秒前
22年春_发布了新的文献求助30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547690
求助须知:如何正确求助?哪些是违规求助? 4633175
关于积分的说明 14629650
捐赠科研通 4574689
什么是DOI,文献DOI怎么找? 2508493
邀请新用户注册赠送积分活动 1484916
关于科研通互助平台的介绍 1455986