Extreme Underwater Image Compression Using Physical Priors

计算机科学 水下 图像压缩 图像质量 人工智能 计算机视觉 数据压缩 像素 迭代重建 先验概率 自编码 图像处理 图像(数学) 深度学习 海洋学 地质学 贝叶斯概率
作者
Mengyao Li,Liquan Shen,Yufei Lin,Kun Wang,Jinbo Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (4): 1937-1951 被引量:3
标识
DOI:10.1109/tcsvt.2022.3218791
摘要

Underwater images (UWIs) require higher compression ratio than terrestrial images due to the limited bandwidth of underwater wireless acoustic channel. In many studies such as marine species, the foreground objects (FGOs) in UWIs need to be observed in detail, while the background only needs to be viewed in general. However, existing image compression methods achieve limited compression ratio and reconstruction quality, which cannot fulfill these practical applications since they do not consider the unique underwater physical priors. To overcome the limitation, we propose an underwater physical prior-based extreme compression network (PPECN) for UWIs compression, which includes an underwater physical prior-guided FGOs autoencoder (UPGAE) and a FGOs-assisted background generator (FG-BGGAN). Specifically, we design an underwater physical prior guidance structure that simulates the data flow in the underwater physical imaging process to adaptively adjust the distribution of received Gaussian features in the UPGAE to be more consistent with real UWIs. During the adjustment, some basic UWI properties can be reconstructed, which can improve the reconstruction quality and implicitly reduce bits through the end-to-end training. Furthermore, the background is generated from simple semantic map under the constraint of the perceptual consistency between background and FGOs, significantly saving coding bits and improving the perceptual quality of the generated background. Extensive experimental results on four underwater image datasets verify that, compared with state-of-the-art compression methods, our PPECN achieves both impressive improvement in the perceptual quality of the whole image and significant gain in the pixel fidelity of the FGOs at the similar low bitrate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温言叮叮铛完成签到,获得积分10
1秒前
1秒前
rubo完成签到,获得积分10
1秒前
1秒前
liuliu发布了新的文献求助10
1秒前
Sid发布了新的文献求助10
2秒前
马敬丽发布了新的文献求助10
2秒前
怡然画板完成签到 ,获得积分10
2秒前
Cc完成签到,获得积分20
3秒前
YMUSTC发布了新的文献求助10
3秒前
龙成阳完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
CeciliaLee发布了新的文献求助10
4秒前
4秒前
123654完成签到 ,获得积分10
5秒前
5秒前
孔雀翎完成签到,获得积分10
5秒前
5秒前
瑶瑶酱完成签到,获得积分10
5秒前
二由发布了新的文献求助10
6秒前
温悦完成签到,获得积分10
7秒前
烟酰胺发布了新的文献求助10
7秒前
丘比特应助UpUp采纳,获得10
8秒前
Ceaser完成签到,获得积分10
8秒前
Cc发布了新的文献求助10
8秒前
饱满鞅发布了新的文献求助10
9秒前
汉堡包应助清秀映阳采纳,获得10
9秒前
雾陆炜发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
honey发布了新的文献求助10
12秒前
自行车v完成签到,获得积分10
13秒前
13秒前
14秒前
justin完成签到,获得积分10
16秒前
二由发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982023
求助须知:如何正确求助?哪些是违规求助? 3525769
关于积分的说明 11228256
捐赠科研通 3263652
什么是DOI,文献DOI怎么找? 1801553
邀请新用户注册赠送积分活动 879904
科研通“疑难数据库(出版商)”最低求助积分说明 807622