Physiologically Based Pharmacokinetic Modeling of Midostaurin and Metabolites at Steady-state to Bridge Drug Interaction Scenarios In Lieu of Clinical Trials

药代动力学 药理学 稳态(化学) 药品 化学 药物相互作用 基于生理学的药代动力学模型 药物与药物的相互作用 医学 物理化学
作者
Hao-ming Gu,Romain Séchaud,Imad Hanna,Ryan M. Pelis,Heidi J. Einolf
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:53 (3): 100036-100036
标识
DOI:10.1016/j.dmd.2025.100036
摘要

Midostaurin and its active metabolites are substrates, mixed inhibitors/inducers of cytochrome P450 (CYP)3A4. The main objective of this study was to develop/refine a physiologically based pharmacokinetic (PBPK) model that incorporated recent clinical drug-drug interaction (DDI) data with midazolam after multiple dosing, to qualify the pharmacokinetic (PK) model simulations of midostaurin and its metabolites, and to apply it to predict untested clinical DDI scenarios with potential comedications. In this study, Simcyp PBPK model of midostaurin and its 2 metabolites was refined from a previously published model associated with endogenous biomarker 4β-hydroxycholesterol data through further optimization of CYP3A4 inhibition/induction potency and was qualified to simulate midostaurin steady-state PK. The incorporation of these parameters enabled DDI predictions of high midostaurin doses on the PK of midazolam and oral contraceptives containing ethinyl estradiol. Additionally, scaling factors for in vitro breast cancer resistance protein and the organic anion transporting polypeptide (OATP1B) inhibition were applied to account for the observed single-dose DDI with rosuvastatin and further extrapolated to predict steady-state DDI with other OATP1B drug substrates. The overall prediction results showed minimal impact of midostaurin at high doses on CYP3A substrates or an effect on the exposure of OATP1B substrates. In summary, the midostaurin PBPK model was retrospectively refined, requalified, and used to simulate the steady-state perpetrator DDI of midostaurin and its metabolites. This PBPK modeling approach and the resulting model predictions were implemented into the midostaurin product label (up to 100 mg twice a day) without the need for confirmatory clinical studies. SIGNIFICANCE STATEMENT: The manuscript describes how a midostaurin PBPK model was updated, verified, and applied to untested scenarios by a predict-learn-confirm cycle as new clinical data become available. It also provides a learning experience of prospective prediction by utilizing endogenous biomarker 4β-hydroxycholesterol to evaluate a complex CYP3A4-mediated drug interaction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜梦婷发布了新的文献求助20
1秒前
张占完成签到,获得积分10
2秒前
科研通AI2S应助tuanheqi采纳,获得20
2秒前
无趣养乐多完成签到 ,获得积分10
4秒前
盛宇大天才完成签到,获得积分10
5秒前
耶椰耶完成签到 ,获得积分10
6秒前
飞翔的荷兰人完成签到,获得积分10
12秒前
材1完成签到 ,获得积分10
13秒前
JERRY完成签到,获得积分10
14秒前
Meng完成签到,获得积分10
14秒前
mymEN完成签到 ,获得积分10
15秒前
17秒前
NewMoona完成签到 ,获得积分10
17秒前
李禾研完成签到,获得积分10
19秒前
Jocelyn完成签到,获得积分10
22秒前
张庭豪完成签到,获得积分10
22秒前
吴建文发布了新的文献求助10
22秒前
halo完成签到,获得积分10
23秒前
自然梦岚完成签到 ,获得积分10
25秒前
李禾和完成签到,获得积分10
26秒前
勤劳小懒虫完成签到 ,获得积分10
29秒前
Jeffrey完成签到,获得积分10
30秒前
小天竺1212完成签到,获得积分10
31秒前
3366ll完成签到 ,获得积分10
33秒前
Jieh完成签到,获得积分10
34秒前
chenzhezhixp完成签到,获得积分10
36秒前
开心成威完成签到 ,获得积分10
36秒前
虽然不学习完成签到 ,获得积分10
38秒前
哎呀呀完成签到,获得积分10
39秒前
不敢装睡完成签到,获得积分10
39秒前
小橘子完成签到 ,获得积分10
40秒前
tienslord完成签到,获得积分10
40秒前
Vegeta完成签到 ,获得积分10
43秒前
尚影芷完成签到,获得积分10
43秒前
元神完成签到 ,获得积分10
44秒前
45秒前
45秒前
45秒前
yang完成签到 ,获得积分10
46秒前
ZZzz完成签到 ,获得积分10
47秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784858
求助须知:如何正确求助?哪些是违规求助? 3330123
关于积分的说明 10244413
捐赠科研通 3045505
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759557