An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features

计算机科学 脑电图 脑-机接口 人工智能 模式识别(心理学) 运动表象 卷积神经网络 特征提取 支持向量机 人工神经网络 冗余(工程) 语音识别 心理学 操作系统 精神科
作者
Shidong Lian,Zheng Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108727-108727 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108727
摘要

Electroencephalograph (EEG) brain-computer interfaces (BCI) have potential to provide new paradigms for controlling computers and devices. The accuracy of brain pattern classification in EEG BCI is directly affected by the quality of features extracted from EEG signals. Currently, feature extraction heavily relies on prior knowledge to engineer features (for example from specific frequency bands); therefore, better extraction of EEG features is an important research direction. In this work, we propose an end-to-end deep neural network that automatically finds and combines features for motor imagery (MI) based EEG BCI with 4 or more imagery classes (multi-task). First, spectral domain features of EEG signals are learned by compact convolutional neural network (CCNN) layers. Then, gated recurrent unit (GRU) neural network layers automatically learn temporal patterns. Lastly, an attention mechanism dynamically combines (across EEG channels) the extracted spectral-temporal features, reducing redundancy. We test our method using BCI Competition IV-2a and a data set we collected. The average classification accuracy on 4-class BCI Competition IV-2a was 85.1 % ± 6.19 %, comparable to recent work in the field and showing low variability among participants; average classification accuracy on our 6-class data was 64.4 % ± 8.35 %. Our dynamic fusion of spectral-temporal features is end-to-end and has relatively few network parameters, and the experimental results show its effectiveness and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁静致远完成签到,获得积分10
刚刚
小二郎应助caimiemie采纳,获得10
刚刚
Xu完成签到,获得积分20
1秒前
hua完成签到,获得积分10
1秒前
2秒前
2秒前
5秒前
6秒前
6秒前
田様应助Doct采纳,获得10
6秒前
体贴期待完成签到,获得积分10
6秒前
hua发布了新的文献求助50
7秒前
Jenny发布了新的文献求助10
8秒前
8秒前
阳光以松发布了新的文献求助10
11秒前
支妙完成签到,获得积分10
12秒前
Kan发布了新的文献求助10
12秒前
完美世界应助别翘二郎腿采纳,获得10
13秒前
杪春完成签到 ,获得积分10
14秒前
时尚丹寒完成签到 ,获得积分10
14秒前
一点完成签到,获得积分10
15秒前
风轻云淡发布了新的文献求助20
15秒前
16秒前
酷波er应助as采纳,获得10
18秒前
Xu发布了新的文献求助20
19秒前
狂野的锦程完成签到,获得积分10
19秒前
20秒前
21秒前
坦率翠霜完成签到 ,获得积分10
22秒前
科目三应助无所吊谓采纳,获得10
23秒前
Akim应助安静凡旋采纳,获得10
23秒前
善学以致用应助虚幻之桃采纳,获得10
23秒前
23秒前
25秒前
负责觅海发布了新的文献求助10
26秒前
28秒前
28秒前
陈文清发布了新的文献求助10
29秒前
可爱多发布了新的文献求助10
30秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547