AI-driven biomarker prediction in oncology: Enhancing pathological image analysis with EXAONEPath.

医学 生物标志物 肿瘤科 病态的 内科学 精确肿瘤学 临床肿瘤学 癌症 生物化学 化学
作者
Hyung Kyung Kim,Jongseong Jang,Jae Kwang Yun,Yong Min Park,Yeon Uk Jeong,Soonyoung Lee
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:43 (16_suppl): 2592-2592
标识
DOI:10.1200/jco.2025.43.16_suppl.2592
摘要

2592 Background: Hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) are fundamental in cancer diagnosis, providing critical insights into tumor morphology and the tumor microenvironment. Traditionally, biomarker assessment has relied on manual pathological evaluations, which are prone to human error and limited in scalability. Subtle biomarker expressions that evade visual detection further challenge conventional methods. Methods: We developed EXAONEPath, an artificial intelligence (AI) model trained on approximately 73,000 pan-cancer H&E-stained WSIs, to predict key cancer biomarkers. The model was evaluated across three major biomarker prediction tasks: Tumor Mutation Burden (TMB) Prediction in Lung Adenocarcinoma (LUAD): Using the TCGA-LUAD cohort, the model was trained (n=373), validated (n=47), and tested (n=47). Cross-institutional validation was conducted on Samsung Medical Center (SMC) (n=341) and an in-house dataset (n=254). EGFR Mutation Prediction in LUAD: The TCGA-LUAD dataset was split into training (n=382), validation (n=48), and test (n=48) sets. Additional validation was performed on the SMC LUAD cohort (n=341). Microsatellite Instability (MSI) Prediction in Colorectal Adenocarcinoma (CRC): A combined TCGA-STAD/TCGA-READ dataset was used for training (n=432), validation (n=55), and testing (n=54). The model was further validated on the SMC CRC cohort (n=974). Results: EXAONEPath demonstrated a strong predictive performance: TMB in LUAD: AUROC scores of 0.77 (TCGA), 0.81 (SMC), and 0.76 (in-house). EGFR Mutation in LUAD: AUROC scores of 0.78 (TCGA) and 0.84 (SMC). MSI in CRC: AUROC scores of 0.92 (TCGA) and 0.86 (SMC). Conclusions: EXAONEPath advances AI-driven pathological image analysis by automating biomarker prediction with high accuracy and cross-institutional robustness. Its strong performance in predicting clinically relevant biomarkers, including TMB, EGFR mutations, and MSI, highlights its potential for integration into precision oncology workflows. Future research will focus on expanding biomarker applications and enhancing cross-institutional generalizability for broader clinical impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JMWWW完成签到 ,获得积分10
1秒前
李晗发布了新的文献求助10
4秒前
半生瓜发布了新的文献求助10
4秒前
Orange应助小刘采纳,获得10
5秒前
LKSkywalker发布了新的文献求助10
7秒前
zhang1发布了新的文献求助10
9秒前
10秒前
Akim应助十一玮采纳,获得10
13秒前
燕儿应助nnnd77采纳,获得10
15秒前
LKSkywalker完成签到,获得积分10
16秒前
17秒前
18秒前
SciGPT应助笨笨雪碧采纳,获得10
19秒前
20秒前
蛋蛋发布了新的文献求助10
21秒前
zzz完成签到,获得积分10
21秒前
半生瓜完成签到,获得积分20
22秒前
小迷鹿完成签到,获得积分10
23秒前
25秒前
Morri发布了新的文献求助10
26秒前
26秒前
青羽发布了新的文献求助10
28秒前
十一玮发布了新的文献求助10
29秒前
刘金帅完成签到,获得积分10
30秒前
谦让涵菡完成签到 ,获得积分10
30秒前
李健应助刘YF采纳,获得50
32秒前
33秒前
36秒前
笨笨雪碧发布了新的文献求助10
36秒前
柔弱绝施发布了新的文献求助10
37秒前
超级苹果完成签到 ,获得积分10
37秒前
38秒前
玄音完成签到,获得积分10
38秒前
迅速曼冬完成签到 ,获得积分10
41秒前
42秒前
42秒前
小刘发布了新的文献求助10
42秒前
aliderichang发布了新的文献求助10
42秒前
善学以致用应助zzz采纳,获得10
45秒前
hsy发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761641
求助须知:如何正确求助?哪些是违规求助? 4101657
关于积分的说明 12692008
捐赠科研通 3817461
什么是DOI,文献DOI怎么找? 2107224
邀请新用户注册赠送积分活动 1131922
关于科研通互助平台的介绍 1010885