Component-Level Segmentation for Oracle Bone Inscription Decipherment

破译 组分(热力学) 甲骨文公司 分割 计算机科学 人工智能 历史 考古 物理 程序设计语言 热力学
作者
Zhikai Hu,Yiu‐ming Cheung,Yonggang Zhang,Peiying Zhang,Ling Tang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (27): 28116-28124
标识
DOI:10.1609/aaai.v39i27.35030
摘要

Oracle Bone Inscriptions (OBIs), as the earliest systematically organized pictographic script in China, hold significant importance in the study of the origins of Chinese civilization. Of the approximately 4,500 excavated OBI characters, only about one-third have been deciphered, leaving the remaining characters shrouded in mystery. Over the past decade, an increasing number of researchers have attempted to leverage artificial intelligence to assist in deciphering OBIs, but these efforts have not yet fully met the demands of this challenging objective. In this paper, we identify a key task—Component-Level OBI Segmentation—based on a successful deciphering case from 2018. This task aims to help experts quickly identify specific components within OBIs, thereby accelerating the deciphering process. Accordingly, we propose a new model to accomplish this task. Our model leverages a small amount of annotated data and a large amount of weakly annotated data and incorporates expert-provided prior knowledge, i.e., stroke rules, to automatically segment OBI components. Additionally, we train a series of auxiliary classifiers to evaluate the segmentation results during the test stage. We also invite experts to conduct a professional assessment of the results, which we cross-validated against our proposed evaluation metrics. Experimental results demonstrate that our method can accurately and clearly present the segmented components to experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
视野胤发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
_蝴蝶小姐发布了新的文献求助10
4秒前
4秒前
马倩发布了新的文献求助10
4秒前
4秒前
4秒前
稳重的安萱完成签到,获得积分10
5秒前
酷酷茹嫣完成签到,获得积分10
5秒前
无花果应助火星上友易采纳,获得10
6秒前
洁净醉柳发布了新的文献求助10
7秒前
7秒前
Hello应助阳光采纳,获得10
7秒前
左丘酬海发布了新的文献求助10
8秒前
8秒前
酷酷茹嫣发布了新的文献求助10
10秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
大模型应助weiwenzuo采纳,获得30
13秒前
14秒前
14秒前
打打应助Leeu采纳,获得100
15秒前
15秒前
15秒前
sunyu发布了新的文献求助10
17秒前
小彭友发布了新的文献求助10
17秒前
Pie完成签到,获得积分10
18秒前
18秒前
木桶人plus发布了新的文献求助10
19秒前
大马哈鱼发布了新的文献求助10
19秒前
情怀应助Foch采纳,获得10
19秒前
酷波er应助陈丫采纳,获得10
19秒前
20秒前
20秒前
科研通AI2S应助元谷雪采纳,获得30
20秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876538
求助须知:如何正确求助?哪些是违规求助? 3419147
关于积分的说明 10712106
捐赠科研通 3143825
什么是DOI,文献DOI怎么找? 1734608
邀请新用户注册赠送积分活动 836908
科研通“疑难数据库(出版商)”最低求助积分说明 782878