材料科学
损伤容限
消散
超分子化学
复合材料
稳健性(进化)
氢键
软机器人
超分子聚合物
韧性
自愈
堆积
纳米技术
计算机科学
结晶学
物理
化学
有机化学
替代医学
执行机构
人工智能
病理
晶体结构
复合数
基因
热力学
医学
生物化学
核磁共振
分子
作者
Xiaokun Han,Tianyun Lu,Yanyou Huang,Guiting Liu,Shaoyun Guo
标识
DOI:10.1002/adma.202510713
摘要
Abstract It is a formidable challenge to integrate superior damage tolerance into robust ionogels due to fundamental conflicts between covalent rigidity and dynamic energy dissipation. Herein, an echinoderm‐inspired supramolecular ionogel is engineered with extreme robustness and damage tolerance via synergistic integration of hard‐soft phase‐separated architecture and multi‐scale sacrificial bonding. The molecularly programmed hard segments of polyurethane integrate crystalline domains, high‐density hydrogen bonds, and π–π stacking, which collectively enhance ionogel robustness, while a judiciously selected ionic liquid (IL) reinforced the hard phase via extensive IL‐polymer multiple hydrogen bonds. The crystalline domains synergizing with reversible sacrificial bonds facilitated efficient energy dissipation through dynamic rupture/reformation mechanisms. Consequently, the supramolecular ionogel achieves advanced tensile strength (49.22 MPa), elongation (1721.28%), toughness (424.09 MJ m −3 ), Young's modulus (48.66 MPa) and unprecedented damage tolerance, manifested as tear resistance (387.02 kJ m −2 , 59‐fold that of polyurethane), outstanding puncture energy (1326.8 mJ), and exceptional high‐speed impact resistance (228.74 MJ m −3 at strain rate of 20 000 s −1 ). Notably, the ionogel demonstrated autonomous room‐temperature self‐healing, broad operational temperature adaptability, flame retardancy, and recyclability. Furthermore, a wearable ionogel sensing matrix is developed to simultaneously accomplish real‐time limb motion tracking and precise damage localization, targeting next‐generation intelligent protective equipment to deliver integrated impact protection and flexible sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI