已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Personalized Medication for Chronic Diseases Using Multimodal Data‐Driven Chain‐of‐Decisions

可解释性 计算机科学 个性化医疗 匹配(统计) 机器学习 精密医学 医学 人工智能 生物信息学 病理 生物
作者
Xiaoli Chu,Yiheng Ye,Shuting Tang,Miaoru Han,Guowei Wang,Shuai Lin,Bingzhen Sun,Qingchun Huang,Yan Zhang,Xiaodong Chu,Kun Bao
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202504079
摘要

Abstract The precise matching of medication regimens to individual patients, known as personalized medication, is critical for the effective management of chronic diseases. Traditional machine learning‐based models for personalized medication regimens typically rely solely on either clinical macro‐phenotypes or molecular‐level drug characteristics. It remains challenging to capture the patient‐medication relationship from a comprehensive perspective that integrates individual patient characteristics with macro‐ and micro‐level properties of the medication. Determining patient‐medication relationships constitutes a three‐stage sequential decision process from a clinical decision‐making perspective. Therefore, inspired by Chain‐of‐Thought prompting, which simulates the decision‐making process of human experts, a Multimodal Data‐Driven Chain‐of‐Decisions (MDD‐CoD) framework is proposed, where three‐stage deep learning tasks are sequentially organized to reflect upstream–downstream logical dependencies, thereby forming a coherent clinical decision‐making process. The model incorporates multimodal clinical phenotype data, multi‐attribute medication data, and insights from clinical experts. Performance evaluation of the model involved comprehensive experiments utilizing five datasets covering four chronic diseases sourced from three hospitals. The dataset comprises information from chronic kidney disease (CKD), membranous nephropathy (MN), rheumatoid arthritis (RA), colorectal cancer (CRC), and knee osteoarthritis (KOA), totaling 3173 unimodal, 502 multimodal, and 2187 medication records from 3675 patients. Experimental results demonstrate that the framework achieves enhanced predictive performance in personalized medication decision‐making based on individual patient disease characteristics, surpassing the strongest baseline across all tasks. This framework serves as a foundational model for clinical mixed data, with improved generalization and interpretability in cross‐disease personalized decision‐making tasks. It offers a scalable solution for the implementation of personalized medication regimens for chronic diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIU完成签到,获得积分10
刚刚
刚刚
简单白风完成签到 ,获得积分10
刚刚
布同完成签到,获得积分10
1秒前
寻桃阿玉完成签到 ,获得积分10
2秒前
2秒前
魁梧的盼望完成签到 ,获得积分10
2秒前
rick3455完成签到 ,获得积分10
3秒前
饼冰饼发布了新的文献求助10
4秒前
5秒前
Sunny完成签到 ,获得积分10
5秒前
kbcbwb2002完成签到,获得积分10
6秒前
6秒前
Rjy完成签到 ,获得积分10
6秒前
7秒前
含着朵白云完成签到 ,获得积分0
8秒前
我是老大应助阔达蜡烛采纳,获得10
8秒前
8秒前
诚心的人雄应助饼冰饼采纳,获得10
9秒前
9秒前
9秒前
阿司匹林完成签到 ,获得积分10
10秒前
10秒前
z001398发布了新的文献求助10
10秒前
Bravetwq完成签到,获得积分10
12秒前
aniver发布了新的文献求助10
12秒前
果汁鱼发布了新的文献求助30
13秒前
Ansels完成签到,获得积分10
14秒前
14秒前
哭泣的丝完成签到 ,获得积分10
14秒前
MissingParadise完成签到 ,获得积分10
14秒前
轻松元绿完成签到 ,获得积分10
14秒前
14秒前
我爱学习完成签到 ,获得积分10
15秒前
wodetaiyangLLL完成签到 ,获得积分10
15秒前
迷人冥完成签到 ,获得积分10
16秒前
ColinWine完成签到 ,获得积分10
17秒前
17秒前
孟筱完成签到 ,获得积分10
19秒前
大神水瓶座完成签到,获得积分10
19秒前
高分求助中
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4235455
求助须知:如何正确求助?哪些是违规求助? 3768832
关于积分的说明 11840101
捐赠科研通 3426375
什么是DOI,文献DOI怎么找? 1880407
邀请新用户注册赠送积分活动 932973
科研通“疑难数据库(出版商)”最低求助积分说明 839988