MSA-Net: Multiscale spatial attention network for medical image segmentation

计算机科学 人工智能 分割 稳健性(进化) 棱锥(几何) 特征(语言学) 图像分割 模式识别(心理学) 块(置换群论) 网络体系结构 计算机视觉 数学 几何学 生物化学 化学 语言学 哲学 计算机安全 基因
作者
Zhaojin Fu,Jinjiang Li,Zhen Hua
出处
期刊:alexandria engineering journal [Elsevier BV]
卷期号:70: 453-473 被引量:16
标识
DOI:10.1016/j.aej.2023.02.039
摘要

Edge accuracy and positional accuracy are the two goals pursued by medical image segmentation. In clinical medicine diagnosis and research, these two goals enable medical image segmentation techniques to help in the effective determination of lesions and lesion analysis. At present, U-Net has become the most important network in the field of image segmentation, and the technologies used in various achievements are derived from its architecture, which also proves from practice that the network structure proposed by U-Net is effective. We have found in a large number of experiments that classical networks indeed show good performance in the field of medical segmentation, but there are still some deficiencies in edge determination and network robustness, especially in the face of blurred edges, the processing results often fail to achieve the expected results. In order to be able to locate segmentation targets and achieve effective determination of blurred edges, a Multiscale Spatial Attention Network (MSA-Net) is proposed as in Fig. 1. In MSA-Net, the Multiscale Pyramid Attention Block (MPAB) is created to enhance the capture of high-level semantic information. In addition, the network uses ASPP, which not only expands the network’s field of view, but also captures richer feature information. In the decoding phase, the Feature Fusion Block (FFB) is created to enable better focus on different dimensional information features and to enhance the feature fusion process. To demonstrate the effectiveness of the network, we validate the performance of MSA-Net on four datasets (ISIC2016, DSB2018, JSRT, GlaS) in three different categories. Compared with mainstream networks, MSA-Net shows better results in detail features, target localization, and edge processing. Finally, we also demonstrate the effectiveness of the MSA-Net architecture through ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忆修完成签到,获得积分10
1秒前
飞快的珩完成签到,获得积分10
3秒前
摇光完成签到,获得积分10
4秒前
慕青应助小趴菜采纳,获得10
9秒前
善学以致用应助害羞凤灵采纳,获得10
10秒前
12秒前
xxyhh发布了新的文献求助10
14秒前
17秒前
18秒前
带领大家发布了新的文献求助10
19秒前
炮仗完成签到 ,获得积分10
22秒前
顺利绮波发布了新的文献求助10
22秒前
徐卷卷完成签到,获得积分10
22秒前
24秒前
kevin完成签到,获得积分10
24秒前
小郭完成签到,获得积分10
26秒前
导师老八完成签到,获得积分10
27秒前
29秒前
活在当下发布了新的文献求助10
29秒前
带领大家完成签到,获得积分10
29秒前
顺利绮波完成签到,获得积分10
30秒前
bkagyin应助range采纳,获得10
32秒前
小趴菜发布了新的文献求助10
33秒前
Lucas应助豆子采纳,获得10
35秒前
38秒前
导师老八发布了新的文献求助10
40秒前
z7777777完成签到,获得积分10
41秒前
小趴菜发布了新的文献求助10
44秒前
Deftfaker完成签到 ,获得积分10
48秒前
49秒前
51秒前
追寻飞风发布了新的文献求助10
52秒前
53秒前
丘比特应助科研通管家采纳,获得10
54秒前
李健应助科研通管家采纳,获得10
54秒前
赘婿应助科研通管家采纳,获得10
54秒前
科目三应助科研通管家采纳,获得10
54秒前
852应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
高高冰蝶应助科研通管家采纳,获得20
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751