MSA-Net: Multiscale spatial attention network for medical image segmentation

计算机科学 人工智能 分割 稳健性(进化) 棱锥(几何) 特征(语言学) 图像分割 模式识别(心理学) 块(置换群论) 网络体系结构 计算机视觉 数学 哲学 基因 生物化学 语言学 化学 计算机安全 几何学
作者
Zhaojin Fu,Jinjiang Li,Zhen Hua
出处
期刊:alexandria engineering journal [Elsevier BV]
卷期号:70: 453-473 被引量:18
标识
DOI:10.1016/j.aej.2023.02.039
摘要

Edge accuracy and positional accuracy are the two goals pursued by medical image segmentation. In clinical medicine diagnosis and research, these two goals enable medical image segmentation techniques to help in the effective determination of lesions and lesion analysis. At present, U-Net has become the most important network in the field of image segmentation, and the technologies used in various achievements are derived from its architecture, which also proves from practice that the network structure proposed by U-Net is effective. We have found in a large number of experiments that classical networks indeed show good performance in the field of medical segmentation, but there are still some deficiencies in edge determination and network robustness, especially in the face of blurred edges, the processing results often fail to achieve the expected results. In order to be able to locate segmentation targets and achieve effective determination of blurred edges, a Multiscale Spatial Attention Network (MSA-Net) is proposed as in Fig. 1. In MSA-Net, the Multiscale Pyramid Attention Block (MPAB) is created to enhance the capture of high-level semantic information. In addition, the network uses ASPP, which not only expands the network’s field of view, but also captures richer feature information. In the decoding phase, the Feature Fusion Block (FFB) is created to enable better focus on different dimensional information features and to enhance the feature fusion process. To demonstrate the effectiveness of the network, we validate the performance of MSA-Net on four datasets (ISIC2016, DSB2018, JSRT, GlaS) in three different categories. Compared with mainstream networks, MSA-Net shows better results in detail features, target localization, and edge processing. Finally, we also demonstrate the effectiveness of the MSA-Net architecture through ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
马俊阳发布了新的文献求助30
2秒前
3秒前
9202211125发布了新的文献求助10
4秒前
4秒前
zz完成签到,获得积分10
4秒前
李傲发布了新的文献求助10
4秒前
5秒前
6秒前
吧KO完成签到,获得积分10
6秒前
curtisness应助包容凌翠采纳,获得10
6秒前
7秒前
燕儿应助科研通管家采纳,获得10
8秒前
leaolf应助科研通管家采纳,获得10
8秒前
LaTeXer应助科研通管家采纳,获得10
8秒前
LaTeXer应助科研通管家采纳,获得10
8秒前
LaTeXer应助科研通管家采纳,获得10
8秒前
LaTeXer应助科研通管家采纳,获得10
8秒前
LaTeXer应助科研通管家采纳,获得10
8秒前
落林樾发布了新的文献求助10
9秒前
LaTeXer应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
燕儿应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
自信续应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Zx_1993应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776841
求助须知:如何正确求助?哪些是违规求助? 4108491
关于积分的说明 12709305
捐赠科研通 3829912
什么是DOI,文献DOI怎么找? 2112722
邀请新用户注册赠送积分活动 1136517
关于科研通互助平台的介绍 1020330