iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction

计算机科学 管道(软件) 人工智能 曲面重建 大脑皮层 曲面(拓扑) 计算生物学 神经科学 数学 生物 几何学 程序设计语言
作者
Li Wang,Zhengwang Wu,Liangjun Chen,Yue Sun,Weili Lin,Gang Li
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:18 (5): 1488-1509 被引量:80
标识
DOI:10.1038/s41596-023-00806-x
摘要

The human cerebral cortex undergoes dramatic and critical development during early postnatal stages. Benefiting from advances in neuroimaging, many infant brain magnetic resonance imaging (MRI) datasets have been collected from multiple imaging sites with different scanners and imaging protocols for the investigation of normal and abnormal early brain development. However, it is extremely challenging to precisely process and quantify infant brain development with these multisite imaging data because infant brain MRI scans exhibit (a) extremely low and dynamic tissue contrast caused by ongoing myelination and maturation and (b) inter-site data heterogeneity resulting from the use of diverse imaging protocols/scanners. Consequently, existing computational tools and pipelines typically perform poorly on infant MRI data. To address these challenges, we propose a robust, multisite-applicable, infant-tailored computational pipeline that leverages powerful deep learning techniques. The main functionality of the proposed pipeline includes preprocessing, brain skull stripping, tissue segmentation, topology correction, cortical surface reconstruction and measurement. Our pipeline can handle both T1w and T2w structural infant brain MR images well in a wide age range (from birth to 6 years of age) and is effective for different imaging protocols/scanners, despite being trained only on the data from the Baby Connectome Project. Extensive comparisons with existing methods on multisite, multimodal and multi-age datasets demonstrate superior effectiveness, accuracy and robustness of our pipeline. We have maintained a website, iBEAT Cloud, for users to process their images with our pipeline ( http://www.ibeat.cloud ), which has successfully processed over 16,000 infant MRI scans from more than 100 institutions with various imaging protocols/scanners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muyassar完成签到,获得积分10
1秒前
文小杰完成签到,获得积分10
1秒前
科目三应助LMZ采纳,获得10
2秒前
居崽完成签到 ,获得积分10
2秒前
小白完成签到,获得积分10
3秒前
淡定碧玉完成签到 ,获得积分10
3秒前
3秒前
kento完成签到,获得积分0
4秒前
科研女仆完成签到 ,获得积分10
4秒前
暴富完成签到,获得积分10
7秒前
zbclzf完成签到,获得积分10
8秒前
zhugao完成签到,获得积分10
8秒前
K珑完成签到,获得积分10
9秒前
Singularity应助阿巴阿巴采纳,获得10
9秒前
lala完成签到,获得积分10
9秒前
大胆的龙猫完成签到,获得积分20
9秒前
森宝完成签到,获得积分10
10秒前
馒头完成签到,获得积分10
10秒前
冰魂应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
FelixChen应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
无餍应助科研通管家采纳,获得10
12秒前
FelixChen应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
FelixChen应助科研通管家采纳,获得10
12秒前
文献高手完成签到 ,获得积分10
13秒前
任风完成签到,获得积分10
15秒前
高大的白莲完成签到 ,获得积分10
16秒前
123123完成签到,获得积分10
18秒前
慕青应助YXH采纳,获得10
20秒前
炙热的羽毛完成签到,获得积分10
20秒前
23秒前
安澜完成签到,获得积分10
23秒前
xxxxxx完成签到,获得积分10
23秒前
24秒前
打打应助李李05采纳,获得10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308