亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Game-Combined Multi-Agent DRL for Tasks Offloading in Wireless Powered MEC Networks

计算机科学 潜在博弈 调度(生产过程) 无线 分布式计算 移动边缘计算 博弈论 无线传感器网络 无线网络 计算机网络 实时计算 纳什均衡 数学优化 服务器 电信 经济 微观经济学 数学
作者
Ang Gao,Shuai Zhang,Yansu Hu,Wei Liang,Soon Xin Ng
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (7): 9131-9144 被引量:14
标识
DOI:10.1109/tvt.2023.3250274
摘要

Wireless powered mobile edge computing (MEC) networks have been envisaged as a promising technology to ensure the ultra-low-power requirement and enhance the continuous work capacity of wireless devices (WDs). However, when multiple WDs coexist in the network, it is non-trivial to minimize the total tasks delay since the optimization variables are intrinsically coupled. Even more, channels are dynamically varying from time to time and the tasks are unpredictable, which aggravates the difficulty to obtain the closed-form solution. This paper considers a challenging hybrid tasks offloading scenario, where offloading tasks can be partially executed locally and remotely in parallel, and each WD is endowed to take both the active RF-transmission and passive backscatter communication (BackCom) for remote tasks offloading. Furthermore, a game-combined multi-agent deep deterministic policy gradient (MADDPG) algorithm is proposed to minimize the total tasks delay with the fairness consideration of multiple WDs, i.e., potential game for offloading decision and MADDPG for time scheduling and harvested energy splitting. Equipped with the feature of ‘centralized training with decentralized execution’, once well trained, each agent in MADDPG can figure out the proper time scheduling and harvested energy splitting independently without sharing information with others. Besides the unilateral contention among WDs for the offloading decision by potential game, a fully decentralized framework is finally designed for the proposed algorithm. Numerical results demonstrate that the game-combined MADDPG algorithm can achieve the near-optimal performance compared with existing centralized approaches, and reduce the convergence time compared with other no-game learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心如意完成签到 ,获得积分10
42秒前
年轻千愁完成签到 ,获得积分10
1分钟前
TEY完成签到 ,获得积分10
1分钟前
所所应助schnappi采纳,获得10
1分钟前
1分钟前
schnappi完成签到,获得积分20
1分钟前
schnappi发布了新的文献求助10
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
2分钟前
James发布了新的文献求助10
2分钟前
James完成签到,获得积分10
3分钟前
传奇3应助wise111采纳,获得10
3分钟前
3分钟前
wise111发布了新的文献求助10
3分钟前
mmyhn完成签到,获得积分10
3分钟前
在水一方应助wise111采纳,获得10
3分钟前
dashi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
wise111发布了新的文献求助10
3分钟前
4分钟前
wise111发布了新的文献求助10
4分钟前
KaK发布了新的文献求助10
4分钟前
科研通AI5应助wise111采纳,获得10
4分钟前
4分钟前
wise111发布了新的文献求助10
4分钟前
wise111发布了新的文献求助10
5分钟前
岩下松风完成签到,获得积分10
5分钟前
烟花应助wise111采纳,获得10
6分钟前
绫艾完成签到,获得积分20
6分钟前
6分钟前
行走完成签到,获得积分10
6分钟前
wise111发布了新的文献求助10
6分钟前
烟花应助wise111采纳,获得10
7分钟前
Akim应助科研通管家采纳,获得10
7分钟前
7分钟前
wise111发布了新的文献求助10
7分钟前
ding应助wise111采纳,获得10
7分钟前
Ji完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468