亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Packaged food detection method based on the generalized Gaussian model for line-scan Raman scattering images

食品包装 材料科学 拉曼光谱 拉曼散射 残余物 聚乙烯 光学 复合材料 算法 计算机科学 化学 食品科学 物理
作者
Zhenfang Liu,Min Huang,Qibing Zhu,Jianwei Qin,Moon S. Kim
出处
期刊:Journal of Food Engineering [Elsevier BV]
卷期号:258: 9-17 被引量:9
标识
DOI:10.1016/j.jfoodeng.2019.04.005
摘要

Abstract Packaged food safety has gained increasing attention worldwide. Existing analytical methods pose difficulties in accurately measuring food quality without destroying the packaging. In this study, a nondestructive detection method for packaged food was proposed based on the generalized Gaussian model for Raman scattering images. The Raman peaks of the scattering image were extracted, and the attenuation information of the peaks far from the laser point were imported into the established generalized Gaussian model. Analysis of the histogram of residual distribution revealed that the difference in residual distribution was enhanced, and an appropriate threshold was selected to separate the Raman baseline correction spectrum of the internal materials. Food-grade polyethylene sheets with thicknesses of 1, 2, and 3 mm were used as packaging materials for comparison experiments. The proposed model can accurately separate the Raman peak of the subsurface material when 1 mm-thick polyethylene was used as the packaging. Food-grade plastic sheets of polyethylene, polypropylene and high-density polyethylene were covered with pure substances such as melamine, sodium nitrite, and maleic anhydride. This model was considered suitable for most food-grade plastic packaging, and the subsurface materials did not influence the separation effect. Finally, evaluation of premium white granulated sugar demonstrated that the model effectively separated the Raman peak produced by packaged food and detected the packaged food without conferring damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
41秒前
优雅啤酒发布了新的文献求助10
45秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
hwj524完成签到,获得积分10
1分钟前
优雅啤酒发布了新的文献求助10
2分钟前
Ashao完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
草莓熊完成签到 ,获得积分10
3分钟前
科研通AI6应助优雅啤酒采纳,获得10
4分钟前
4分钟前
4分钟前
jinyue发布了新的文献求助10
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
Ephemerality完成签到 ,获得积分10
4分钟前
6分钟前
6分钟前
优雅啤酒发布了新的文献求助10
6分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
优雅啤酒发布了新的文献求助10
7分钟前
xiaolang2004发布了新的文献求助50
7分钟前
JamesPei应助忧虑的安青采纳,获得10
7分钟前
8分钟前
怕黑凝海发布了新的文献求助10
8分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
8分钟前
香蕉觅云应助怕黑凝海采纳,获得10
8分钟前
斯文败类应助机灵眼神采纳,获得10
8分钟前
怕黑凝海完成签到,获得积分10
8分钟前
科研通AI5应助优雅啤酒采纳,获得10
8分钟前
9分钟前
机灵眼神发布了新的文献求助10
9分钟前
9分钟前
优雅啤酒发布了新的文献求助10
9分钟前
无畏完成签到 ,获得积分10
9分钟前
优雅啤酒发布了新的文献求助10
10分钟前
英俊的铭应助科研通管家采纳,获得10
11分钟前
Owen应助巴山夜雨采纳,获得10
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4359594
求助须知:如何正确求助?哪些是违规求助? 3861471
关于积分的说明 12044187
捐赠科研通 3503344
什么是DOI,文献DOI怎么找? 1922731
邀请新用户注册赠送积分活动 964970
科研通“疑难数据库(出版商)”最低求助积分说明 864419