Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: a retrospective radiomics study

医学 前列腺癌 转移 骨转移 病变 正电子发射断层摄影术 放射科 核医学 癌症 病理 内科学
作者
Emine Acar,Asım Leblebici,Berat Ender Ellidokuz,Yasemin Başbınar,Gamze Çapa Kaya
出处
期刊:British Journal of Radiology [Wiley]
卷期号:92 (1101) 被引量:56
标识
DOI:10.1259/bjr.20190286
摘要

Using CT texture analysis and machine learning methods, this study aims to distinguish the lesions imaged via 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/CT as metastatic and completely responded in patients with known bone metastasis and who were previously treated.We retrospectively reviewed the 68Ga-PSMA PET/CT images of 75 patients after treatment, who were previously diagnosed with prostate cancer and had known bone metastasis. A texture analysis was performed on the metastatic lesions showing PSMA expression and completely responded sclerotic lesions without PSMA expression through CT images. Textural features were compared in two groups. Thus, the distinction of metastasis/completely responded lesions and the most effective parameters in this issue were determined by using various methods [decision tree, discriminant analysis, support vector machine (SVM), k-nearest neighbor (KNN), ensemble classifier] in machine learning.In 28 of the 35 texture analysis findings, there was a statistically significant difference between the two groups. The Weighted KNN method had the highest accuracy and area under the curve, has been chosen as the best model. The weighted KNN algorithm was succeeded to differentiate sclerotic lesion from metastasis or completely responded lesions with 0.76 area under the curve. GLZLM_SZHGE and histogram-based kurtosis were found to be the most important parameters in differentiating metastatic and completely responded sclerotic lesions.Metastatic lesions and completely responded sclerosis areas in CT images, as determined by 68Ga-PSMA PET, could be distinguished with good accuracy using texture analysis and machine learning (Weighted KNN algorithm) in prostate cancer.Our findings suggest that, with the use of newly emerging software, CT imaging can contribute to identifying the metastatic lesions in prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhouzhou完成签到,获得积分20
1秒前
hailey完成签到,获得积分10
1秒前
现代的妍发布了新的文献求助10
2秒前
4秒前
5秒前
日日新发布了新的文献求助10
7秒前
8秒前
小苹果完成签到,获得积分10
9秒前
幸福的向彤完成签到,获得积分10
11秒前
香蕉觅云应助隐形熊猫采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
机智思真完成签到,获得积分10
13秒前
谦让的莆完成签到 ,获得积分10
13秒前
145263发布了新的文献求助10
13秒前
qiyun完成签到,获得积分10
13秒前
ChatGPT发布了新的文献求助10
15秒前
Maestro_S应助陈江河采纳,获得10
16秒前
17秒前
打打应助苏言采纳,获得10
18秒前
希望天下0贩的0应助145263采纳,获得10
18秒前
Blade发布了新的文献求助10
18秒前
机智思真发布了新的文献求助10
19秒前
19秒前
万事顺意完成签到 ,获得积分10
20秒前
zhang完成签到,获得积分10
22秒前
23秒前
日日新完成签到,获得积分10
23秒前
24秒前
田様应助徐徐徐采纳,获得10
25秒前
25秒前
win关闭了win文献求助
26秒前
yar应助落寞的土豆采纳,获得10
27秒前
yar应助落寞的土豆采纳,获得10
27秒前
zhang发布了新的文献求助10
27秒前
苏言完成签到,获得积分10
28秒前
江河湖海完成签到,获得积分10
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103513
求助须知:如何正确求助?哪些是违规求助? 3641221
关于积分的说明 11538535
捐赠科研通 3349869
什么是DOI,文献DOI怎么找? 1840540
邀请新用户注册赠送积分活动 907555
科研通“疑难数据库(出版商)”最低求助积分说明 824725