Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xsy完成签到 ,获得积分10
4秒前
Estella完成签到 ,获得积分10
7秒前
小小铱完成签到,获得积分10
7秒前
sanker完成签到 ,获得积分10
10秒前
CuteG完成签到 ,获得积分10
13秒前
18秒前
发发完成签到 ,获得积分10
21秒前
活力的珊完成签到 ,获得积分10
27秒前
坏坏的快乐完成签到,获得积分10
28秒前
lilaccalla完成签到 ,获得积分10
34秒前
呆萌滑板完成签到 ,获得积分10
39秒前
xl完成签到 ,获得积分10
45秒前
ocean完成签到,获得积分10
46秒前
47秒前
Fern完成签到 ,获得积分10
53秒前
又又完成签到,获得积分10
58秒前
1分钟前
东方欲晓完成签到 ,获得积分0
1分钟前
1分钟前
科研通AI5应助欣心采纳,获得10
1分钟前
SYLH应助朴素的紫安采纳,获得10
1分钟前
可靠尔岚发布了新的文献求助10
1分钟前
扫地888完成签到 ,获得积分10
1分钟前
DrLuffy完成签到 ,获得积分10
2分钟前
朴素的紫安完成签到 ,获得积分10
2分钟前
刘辰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Serein完成签到,获得积分10
2分钟前
顺顺发布了新的文献求助10
2分钟前
Skywings完成签到,获得积分10
2分钟前
先锋老刘001完成签到,获得积分10
2分钟前
榆木小鸟完成签到 ,获得积分10
2分钟前
肯德鸭完成签到,获得积分10
2分钟前
wintersss完成签到,获得积分10
2分钟前
笨笨忘幽完成签到,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
WRZ完成签到 ,获得积分10
2分钟前
最棒哒完成签到 ,获得积分10
2分钟前
大气的乌冬面完成签到,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353