反应性(心理学)
木质素
化学
亲核细胞
乙醚
聚合物
有机化学
计算化学
质子化
催化作用
医学
病理
离子
替代医学
作者
Adam Pelzer,Linda J. Broadbelt
标识
DOI:10.1021/acs.jpcc.6b12078
摘要
Current methods for processing lignocellulosic biomass fail to take full advantage of the phenolic chemicals available in lignin, the third most common polymer on the planet. The complexity of the lignin polymer structure, the lack of knowledge of the mechanisms by which it breaks down, and the difficulties in predicting and controlling the reaction product distribution make improvement in processing methods challenging. The use of model compounds, which contain only a few key features of the native polymer, allow the reactivity of the overall polymer to be investigated more simply by isolating key elements. In our previous work, we examined the mechanism of acidolysis for two α-O-4 lignin model compounds, benzylphenyl ether (BPE) and 1-(phenoxyethyl)benzene (PEB). In the present work, we examine the rate-limiting step of this mechanism, a nucleophilic attack on the α-carbon commensurate with protonation of the ether oxygen, for other α-O-4 model compounds that contain features more reminiscent of native lignin, including compounds based on native model dimers. The effects of individual substituents and combinations of substituents are also examined in order to determine their contributions to the reactivity of native lignin dimers. Simple relationships are examined between ground-state properties and reactivity. The results of these calculations show that the effects of substituents on the reactivity of BPE-based compounds are quite different from those of PEB-based compounds. While reasonable correlations can be found for BPE reactivity and properties across substituents, PEB shows much less predictable reactivity except among small subsets of substituents. Overall, the trends observed here provide useful information about the reactivity of α-O-4 bonds in lignin during acidolysis as a function of the local chemical environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI