乘性噪声
动态规划
自适应控制
最优控制
噪音(视频)
随机控制
计算机科学
控制理论(社会学)
数学优化
趋同(经济学)
理论(学习稳定性)
国家(计算机科学)
乘法函数
控制(管理)
数学
算法
人工智能
机器学习
经济增长
数字信号处理
图像(数学)
模拟信号
信号传递函数
数学分析
经济
计算机硬件
作者
Tao Bian,Yu Jiang,Zhong‐Ping Jiang
标识
DOI:10.1109/tac.2016.2550518
摘要
In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.
科研通智能强力驱动
Strongly Powered by AbleSci AI