材料科学
锚固
复合数
锂(药物)
阴极
化学工程
原位
氧气
复合材料
有机化学
物理化学
化学
医学
结构工程
工程类
内分泌学
作者
Lifan Wang,Pengfei Jiang,Yiheng Wu,Ruixiang Li,Min Chen,Xindong Wang,Chun Zhan,Guicheng Liu
标识
DOI:10.1002/adfm.202511681
摘要
Abstract The development of high‐energy all‐solid‐state lithium‐ion batteries (ASSLIBs) is hindered by interfacial incompatibility between Ni‐rich layered oxides (LiNi 0.8 Co 0.1 Mn 0.1 O 2 , NCM811) and solid electrolytes (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , LATP), where co‐sintering‐induced Li + depletion and the subsequent oxygen release synergistically degrade electrochemical performance. Here, a dual‐functional interface engineering strategy is developed through thermochemical coordination of dynamic lithium compensation and oxygen‐anchoring modulation. Incorporation of 10 wt.% LiOH effectively suppresses cation interdiffusion during 700 °C co‐sintering, while La 4 NiLiO 8 lithium–oxygen conductor stabilizes lattice oxygen via vacancy passivation, thus eventually protecting NCM811 from thermal decomposition (post‐sintering XRD, XPS, and TEM). The optimized NCM811‐LATP composite cathode achieves a high initial capacity of 217.1 mAh g −1 at 0.1 C with 80% capacity retention over 248 cycles a 143% lifespan improvement compared to baseline systems, while maintaining charge‐transfer impedance below 97.8 Ω (EIS) and suppressing layered‐to‐spinel phase transitions (post‐cycling TEM). This work establishes a universal paradigm for oxygen‐interface co‐stabilization in ASSLIBs, balancing thermochemical stability with interfacial ion transport to unlock ultra‐stable cycling in high‐energy‐density solid‐state systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI