亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven approach to solving the Allen–Cahn equation in varying dimensions using physics-informed neural networks (PINNs)

物理 人工神经网络 统计物理学 应用数学 经典力学 理论物理学 人工智能 数学 计算机科学
作者
Nek Muhammad Katbar,Shengjun Liu,Hongjuan Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (5)
标识
DOI:10.1063/5.0266746
摘要

This study investigates a phase-field model governed by the Allen–Cahn equation, incorporating spatially varying forcing that significantly influences system dynamics resulting in pattern formation, controlled interface motion, and novel steady-state solutions. Physics-informed neural networks (PINNs) are employed to solve this system, and the results demonstrate that PINNs can generate highly accurate solutions with relatively few iterations, even under diverse initial conditions. The high accuracy of the PINN in simulating the nonlinear dynamics of complex systems was confirmed in comparison with typical numerical solutions. The findings show that initial conditions have a significant impact on the rate and type of phase evolution: higher initial amplitudes indicate multi-stage complex interface evolution, while lower amplitudes indicate the least amount of interface roughness. The dynamics of the Allen–Cahn equation are shown to minimize the interfacial energy over time, forcing the phase field toward equilibrium. The impact of the mobility and thickness of the interface on the phase evolution was also investigated. Rapidly changing initial circumstances provide an exception, momentarily increasing interfacial complexity, but higher mobility (L) speeds up interface migration, improving phase separation. The effect of the thickness of the interface changes with the starting profile. For smoother configurations, it provides uniform phase separation; however, when the initial profile has abrupt fluctuations, the effects are uneven in space. The scope of PINNs in kinetic-controlled applications such as alloy solidification and polymer phase separation is expanded by these findings, which demonstrate that PINNs are a very useful tool for phase-field modeling and can accurately and computationally simulate dynamic systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zion完成签到,获得积分0
4秒前
6秒前
ren发布了新的文献求助10
11秒前
13秒前
好巧发布了新的文献求助10
18秒前
kanoz完成签到 ,获得积分10
19秒前
22秒前
22秒前
有足量NaCl完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
28秒前
有足量NaCl发布了新的文献求助10
29秒前
36秒前
丘比特应助有足量NaCl采纳,获得10
37秒前
Wei发布了新的文献求助10
40秒前
50秒前
56秒前
57秒前
共享精神应助六层楼采纳,获得10
1分钟前
酷炫无敌发布了新的文献求助10
1分钟前
1分钟前
六层楼发布了新的文献求助10
1分钟前
1分钟前
六层楼完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
吴彦祖完成签到,获得积分10
1分钟前
情怀应助啦啦采纳,获得10
1分钟前
吃肉的兔子完成签到,获得积分10
1分钟前
1分钟前
英俊的铭应助酷炫无敌采纳,获得10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
1分钟前
yueying完成签到,获得积分10
1分钟前
酷炫无敌发布了新的文献求助10
1分钟前
带鱼的笔芯完成签到,获得积分20
1分钟前
2分钟前
葛觅荷发布了新的文献求助10
2分钟前
葛觅荷完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4229107
求助须知:如何正确求助?哪些是违规求助? 3762452
关于积分的说明 11823931
捐赠科研通 3422637
什么是DOI,文献DOI怎么找? 1878217
邀请新用户注册赠送积分活动 931330
科研通“疑难数据库(出版商)”最低求助积分说明 839157