Short-Term Residential Load Forecasting Framework Based on Spatial–Temporal Fusion Adaptive Gated Graph Convolution Networks

期限(时间) 计算机科学 卷积(计算机科学) 图形 融合 人工智能 数据挖掘 理论计算机科学 人工神经网络 语言学 哲学 物理 量子力学
作者
T. Zhang,Wenhua Jiao,Jiguo Yu,Yudou Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3551778
摘要

Enhancing the prediction of volatile and intermittent electric loads is one of the pivotal elements that contributes to the smooth functioning of modern power grids. However, conventional deep learning-based forecasting techniques fall short in simultaneously taking into account both the temporal dependencies of historical loads and the spatial structure between residential units, resulting in a subpar prediction performance. Furthermore, the representation of the spatial graph structure is frequently inadequate and constrained, along with the complexities inherent in Spatial-Temporal data, impeding the effective learning among different households. To alleviate those shortcomings, this article proposes a novel framework: Spatial-Temporal fusion adaptive gated graph convolution networks (STFAG-GCNs), tailored for residential short-term load forecasting (STLF). Spatial-Temporal fusion graph construction is introduced to compensate for several existing correlations where additional information are not known or unreflected in advance. Through an innovative gated adaptive fusion graph convolution (AFG-Conv) mechanism, Spatial-Temporal fusion graph convolution network (STFGCN) dynamically model the Spatial-Temporal correlations implicitly. Meanwhile, by integrating a gated temporal convolutional network (Gated TCN) and multiple STFGCNs into a unified Spatial-Temporal fusion layer, STFAG-GCN handles long sequences by stacking layers. Experimental results on real-world datasets validate the accuracy and robustness of STFAG-GCN in forecasting short-term residential loads, highlighting its advancements over state-of-the-art methods. Ablation experiments further reveal its effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangjius发布了新的文献求助10
1秒前
bc应助ppc采纳,获得10
1秒前
5秒前
大橙子完成签到,获得积分10
7秒前
7秒前
7秒前
冬aa完成签到 ,获得积分10
12秒前
13秒前
melody发布了新的文献求助10
13秒前
章章发布了新的文献求助10
13秒前
18秒前
Whassupww完成签到,获得积分10
19秒前
崔尔蓉完成签到,获得积分10
22秒前
liuhe发布了新的文献求助10
23秒前
paleo-地质完成签到,获得积分10
27秒前
Ningxin完成签到,获得积分10
27秒前
英俊延恶完成签到,获得积分10
28秒前
kai chen完成签到 ,获得积分0
32秒前
wangjius完成签到,获得积分10
32秒前
西瓜霜完成签到 ,获得积分10
33秒前
利奈唑胺完成签到,获得积分10
33秒前
科研通AI5应助务实的又柔采纳,获得10
33秒前
34秒前
平淡纸飞机完成签到 ,获得积分10
34秒前
xx应助科研通管家采纳,获得10
37秒前
英姑应助科研通管家采纳,获得10
37秒前
orixero应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得10
37秒前
爆米花应助科研通管家采纳,获得10
37秒前
Lin应助科研通管家采纳,获得10
37秒前
韩野完成签到,获得积分10
37秒前
小蘑菇应助科研通管家采纳,获得50
37秒前
Lucas应助科研通管家采纳,获得10
38秒前
英姑应助科研通管家采纳,获得10
38秒前
上官若男应助科研通管家采纳,获得10
38秒前
李健应助科研通管家采纳,获得10
38秒前
冰魂应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得50
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777767
求助须知:如何正确求助?哪些是违规求助? 3323293
关于积分的说明 10213450
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275