计算机科学
代表(政治)
运动(物理)
对象(语法)
人工智能
计算机视觉
政治
政治学
法学
作者
Xiaojun Hu,Libo Long,Jochen Lang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2025-04-11
卷期号:39 (4): 3590-3598
标识
DOI:10.1609/aaai.v39i4.32373
摘要
Dynamic object modeling is a critical challenge in 3D scene reconstruction. Previous methods typically maintain a canonical space to represent the object model, and a deformation field to express the object motion. However, this approach fails when the object undergoes large motions. The position variation caused by significant motion not only complicates the establishment of a canonical space, but also misleads the interpretation of the deformation field. To overcome the above weaknesses, we propose Motion Decoupled Dynamic 3D Gaussian Splatting (M5D-GS), the first 3D-GS model that separates motion and deformation modeling for dynamic object representation with large motion from a monocular camera. M5D-GS increases the practicality of 3D-GS, as it is common for objects to move, rotate, and deform simultaneously. Current datasets only contain object deformations with slight motions. We introduce a pipeline to reuse current benchmarks by adding large motions into the scene. We also introduce a new benchmark featuring several new scenes with complex motions, scenes augmented from previous datasets, and some real world recorded testcases, to fully demonstrate our improvements. Our M5D-GS significantly increases the accuracy under large motion scenarios while maintaining high rendering speed, which makes it suitable for dynamic object representation tasks including 4D novel view synthesis and real-time rendering.
科研通智能强力驱动
Strongly Powered by AbleSci AI