医学
神经导航
减压
外科
解剖(医学)
放射科
切除术
作者
Massimiliano Visocchi,Francesco Signorelli
出处
期刊:Advances and technical standards in neurosurgery
日期:2024-01-01
卷期号:: 295-305
标识
DOI:10.1007/978-3-031-53578-9_10
摘要
Surgical approaches directed toward craniovertebral junction (CVJ) can be addressed to the ventral, dorsal, and lateral aspects through a variety of 360° surgical corridors Herein, we report features, advantages, and limits of the updated technical support in CVJ surgery in clinical setting and dissection laboratories enriched by our preliminary surgical results of the simultaneous application of O-arm intraoperative neuronavigation and imaging system along with the 3D-4K EX in TOA for the treatment of CVJ pathologies.In the past 4 years, eight patients harboring CVJ compressive pathologies underwent one-step combined anterior neurosurgical decompression and posterior instrumentation and fusion technique with the aid of exoscope and O-arm. In our equipped Cranio-Vertebral Junction Laboratory, we use fresh cadavers (and injected "head and neck" specimens) whose policy, protocols, and logistics have already been elucidated in previous works. Five fresh-frozen adult specimens were dissected adopting an FLA. In these specimens, a TOA was also performed, as well as a neuronavigation-assisted comparison between transoral and transnasal explorable distances.A complete decompression along with stable instrumentation and fusion of the CVJ was accomplished in all the cases at the maximum follow-up (mean: 25.3 months). In two cases, the O-arm navigation allowed the identification of residual compression that was not clearly visible using the microscope alone. In four cases, it was not possible to navigate C1 lateral masses and C2 isthmi due to the angled projection unfitting with the neuronavigation optical system, so misleading the surgeon and strongly suggesting changing surgical strategy intraoperatively. In another case (case 4), it was possible to navigate and perform both C1 lateral masses and C2 isthmi screwing, but the screw placement was suboptimal at the immediate postoperative radiological assessment. In this case, the hardware displacement occurred 2 months later requiring reoperation.
科研通智能强力驱动
Strongly Powered by AbleSci AI