The Influence of Cathode Degradation Products on the Anode Interface in Lithium-Ion Batteries

阳极 电解质 降级(电信) 阴极 锂(药物) 材料科学 电化学 电池(电) 介电谱 石英晶体微天平 过渡金属 锂离子电池 化学工程 无机化学 化学 电极 吸附 计算机科学 有机化学 工程类 物理化学 电信 内分泌学 医学 功率(物理) 物理 生物化学 量子力学 催化作用
作者
Zhenyu Zhang,Samia Said,Adam J. Lovett,Rhodri Jervis,Sohrab R. Daemi,Dan J. L. Brett,Thomas S. Miller
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (13): 9389-9402
标识
DOI:10.1021/acsnano.3c10208
摘要

Degradation of cathode materials in lithium-ion batteries results in the presence of transition metal ions in the electrolyte, and these ions are known to play a major role in capacity fade and cell failure. Yet, while it is known that transition metal ions migrate from the metal oxide cathode and deposit on the graphite anode, their specific influence on anode reactions and structures, such as the solid electrolyte interphase (SEI), is still quite poorly understood due to the complexity in studying this interface in operational cells. In this work we combine operando electrochemical atomic force microscopy (EC-AFM), electrochemical quartz crystal microbalance (EQCM), and electrochemical impedance spectroscopy (EIS) measurements to probe the influence of a range of transition metal ions on the morphological, mechanical, chemical, and electrical properties of the SEI. By adding representative concentrations of Ni2+, Mn2+, and Co2+ ions into a commercially relevant battery electrolyte, the impacts of each on the formation and stability of the anode interface layer is revealed; all are shown to pose a threat to battery performance and stability. Mn2+, in particular, is shown to induce a thick, soft, and unstable SEI layer, which is known to cause severe degradation of batteries, while Co2+ and Ni2+ significantly impact interfacial conductivity. When transition metal ions are mixed, SEI degradation is amplified, suggesting a synergistic effect on the cell stability. Hence, by uncovering the roles these cathode degradation products play in operational batteries, we have provided a foundation upon which strategies to mitigate or eliminate these degradation products can be developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lexcellent完成签到,获得积分20
1秒前
hrq完成签到,获得积分10
1秒前
英俊的铭应助奵宝采纳,获得10
2秒前
也不尬别人应助冷傲雁卉采纳,获得10
3秒前
Pyc完成签到 ,获得积分10
3秒前
Sofia驳回了bkagyin应助
6秒前
科研小白发布了新的文献求助10
6秒前
领导范儿应助das采纳,获得10
6秒前
7秒前
秋雪瑶应助科研通管家采纳,获得10
8秒前
gjww应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Ellctoy应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
9秒前
科目三应助iaskwho采纳,获得10
9秒前
11秒前
mashang发布了新的文献求助10
13秒前
14秒前
Akim应助葭月十七采纳,获得10
14秒前
先一发布了新的文献求助10
15秒前
21秒前
22秒前
老阎应助法外狂徒采纳,获得10
22秒前
23秒前
Qimier完成签到 ,获得积分10
25秒前
奵宝发布了新的文献求助10
25秒前
今后应助柯仇天采纳,获得10
26秒前
27秒前
葭月十七发布了新的文献求助10
27秒前
斯文败类应助阔达水之采纳,获得10
27秒前
31秒前
老阎应助法外狂徒采纳,获得10
31秒前
OYY发布了新的文献求助10
32秒前
33秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2410597
求助须知:如何正确求助?哪些是违规求助? 2105967
关于积分的说明 5320691
捐赠科研通 1833475
什么是DOI,文献DOI怎么找? 913598
版权声明 560840
科研通“疑难数据库(出版商)”最低求助积分说明 488515