Adaptive cascaded transformer U-Net for MRI brain tumor segmentation

分割 计算机科学 变压器 编码器 人工智能 模式识别(心理学) 电压 量子力学 操作系统 物理
作者
Bonian Chen,Qiule Sun,Yutong Han,Bin Liu,Jianxin Zhang,Qiang Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (11): 115036-115036 被引量:11
标识
DOI:10.1088/1361-6560/ad4081
摘要

Abstract Objective. Brain tumor segmentation on magnetic resonance imaging (MRI) plays an important role in assisting the diagnosis and treatment of cancer patients. Recently, cascaded U-Net models have achieved excellent performance via conducting coarse-to-fine segmentation of MRI brain tumors. However, they are still restricted by obvious global and local differences among various brain tumors, which are difficult to solve with conventional convolutions. Approach. To address the issue, this study proposes a novel Adaptive Cascaded Transformer U-Net (ACTransU-Net) for MRI brain tumor segmentation, which simultaneously integrates Transformer and dynamic convolution into a single cascaded U-Net architecture to adaptively capture global information and local details of brain tumors. ACTransU-Net first cascades two 3D U-Nets into a two-stage network to segment brain tumors from coarse to fine. Subsequently, it integrates omni-dimensional dynamic convolution modules into the second-stage shallow encoder and decoder, thereby enhancing the local detail representation of various brain tumors through dynamically adjusting convolution kernel parameters. Moreover, 3D Swin-Transformer modules are introduced into the second-stage deep encoder and decoder to capture image long-range dependencies, which helps adapt the global representation of brain tumors. Main results. Extensive experiment results evaluated on the public BraTS 2020 and BraTS 2021 brain tumor data sets demonstrate the effectiveness of ACTransU-Net, with average DSC of 84.96% and 91.37%, and HD95 of 10.81 and 7.31 mm, proving competitiveness with the state-of-the-art methods. Significance. The proposed method focuses on adaptively capturing both global information and local details of brain tumors, aiding physicians in their accurate diagnosis. In addition, it has the potential to extend ACTransU-Net for segmenting other types of lesions. The source code is available at: https://github.com/chenbn266/ACTransUnet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xt发布了新的文献求助10
刚刚
无情勒发布了新的文献求助20
1秒前
1秒前
linggggg完成签到,获得积分10
1秒前
情怀应助wei采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得30
4秒前
Owen应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
刘桉岐发布了新的文献求助10
4秒前
LXY应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
LXY应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
LXY应助科研通管家采纳,获得10
4秒前
喜马拉雅完成签到 ,获得积分10
5秒前
6秒前
6秒前
Robin发布了新的文献求助10
6秒前
香蕉觅云应助小荣采纳,获得10
7秒前
李健的小迷弟应助执念采纳,获得10
7秒前
wtian1221应助jerry采纳,获得50
8秒前
子车代芙完成签到,获得积分10
9秒前
9秒前
深情安青应助cheems采纳,获得10
10秒前
清爽代芹完成签到,获得积分10
11秒前
124应助一只小鲨鱼采纳,获得10
12秒前
12秒前
13秒前
Owen应助ll采纳,获得10
13秒前
13秒前
希望天下0贩的0应助ll采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672