生物膜
嗜盐菌
盐度
生物污染
生物反应器
环境科学
化学
环境工程
微生物学
生物
生态学
细菌
生物化学
遗传学
有机化学
膜
作者
Weizhi Zhou,Jie Hao,Yiting Guo,Chuanfu Zhao,Mengru Zhang,Shuhui Zhang,Fei Han
标识
DOI:10.1016/j.biortech.2024.130727
摘要
Understanding the different biological responses to salinity gradient between coexisting biofilm and flocs is crucial for regulating the ecological function of biofilm system. This study investigated performance, dynamics, and community assembly of biofilm system under 3 %–7% salinity gradient. The removal efficiency of NH4+-N remained stable and exceeded 93 % at 3 %–6% salinity, but decreased to below 80 % at 7 % salinity. The elevated salinity promoted the synthesis of extracellular polymer substrates, inhibited microbial respiration, and significantly regulated the microbial community structure. Compared to flocs, biofilm exhibited greater species diversity and richer Nitrosomonas. It was found diffusion limitations dominated the microbial community assembly under the salinity gradient. And microbial network revealed positive interactions predominated the microbial relationships, designating norank Spirochaetaceae, unclassified Micrococcales, Corynebacterium, and Pusillimonas as keystone species. Moreover, distinct salinity preferences in nitrogen transformation-related genes were observed. This study can improve the understanding to the regulation of biofilm systems to salt stresses.
科研通智能强力驱动
Strongly Powered by AbleSci AI