The Application of Design Thinking in Developing a Deep Learning Algorithm for Hip Fracture Detection

髋部骨折 算法 临床实习 卷积神经网络 计算机科学 人工智能 软件部署 设计思维 机器学习 过程(计算) 深度学习 医疗保健 医学 物理疗法 人机交互 内科学 软件工程 骨质疏松症 操作系统 经济增长 经济
作者
Chun-Hsiang Ouyang,Chih-Chi Chen,Yu‐San Tee,Wei‐Cheng Lin,Ling‐Wei Kuo,Chien-An Liao,Chi‐Tung Cheng,Chien‐Hung Liao
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (6): 735-735 被引量:7
标识
DOI:10.3390/bioengineering10060735
摘要

(1) Background: Design thinking is a problem-solving approach that has been applied in various sectors, including healthcare and medical education. While deep learning (DL) algorithms can assist in clinical practice, integrating them into clinical scenarios can be challenging. This study aimed to use design thinking steps to develop a DL algorithm that accelerates deployment in clinical practice and improves its performance to meet clinical requirements. (2) Methods: We applied the design thinking process to interview clinical doctors and gain insights to develop and modify the DL algorithm to meet clinical scenarios. We also compared the DL performance of the algorithm before and after the integration of design thinking. (3) Results: After empathizing with clinical doctors and defining their needs, we identified the unmet need of five trauma surgeons as "how to reduce the misdiagnosis of femoral fracture by pelvic plain film (PXR) at initial emergency visiting". We collected 4235 PXRs from our hospital, of which 2146 had a hip fracture (51%) from 2008 to 2016. We developed hip fracture DL detection models based on the Xception convolutional neural network by using these images. By incorporating design thinking, we improved the diagnostic accuracy from 0.91 (0.84-0.96) to 0.95 (0.93-0.97), the sensitivity from 0.97 (0.89-1.00) to 0.97 (0.94-0.99), and the specificity from 0.84 (0.71-0.93) to 0.93(0.990-0.97). (4) Conclusions: In summary, this study demonstrates that design thinking can ensure that DL solutions developed for trauma care are user-centered and meet the needs of patients and healthcare providers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
Koi应助by采纳,获得10
1秒前
iNk应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
可爱的函函应助猪猪hero采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
帅气蓝发布了新的文献求助10
3秒前
3秒前
浅言发布了新的文献求助10
3秒前
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Zoo应助科研通管家采纳,获得20
3秒前
慕青应助科研通管家采纳,获得10
3秒前
LMH完成签到,获得积分10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
爱吃巧乐兹完成签到,获得积分10
4秒前
龙龙不卷完成签到,获得积分10
4秒前
YMAO完成签到,获得积分10
4秒前
花花瞌睡完成签到,获得积分20
5秒前
彭彭发布了新的文献求助30
5秒前
Jerry完成签到,获得积分10
5秒前
Temperature发布了新的文献求助10
6秒前
谓之新午完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Johnny完成签到,获得积分10
8秒前
高分求助中
Organic Chemistry 30086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4296266
求助须知:如何正确求助?哪些是违规求助? 3822020
关于积分的说明 11965989
捐赠科研通 3464062
什么是DOI,文献DOI怎么找? 1900013
邀请新用户注册赠送积分活动 948095
科研通“疑难数据库(出版商)”最低求助积分说明 850653