Electroencephalogram-based Emotion Recognition with Hybrid Graph Convolutional Network Model

卷积神经网络 计算机科学 图形 特征提取 人工智能 模式识别(心理学) 脑电图 特征(语言学) 深度学习 情绪分类 机器学习 理论计算机科学 心理学 语言学 精神科 哲学
作者
Rakibul Alam Nahin,Md. Tahmidul Islam,Abrar Kabir,Sadiya Afrin,Imtiaz Ahmed Chowdhury,Rafeed Rahman,Md. Golam Rabiul Alam
标识
DOI:10.1109/ccwc57344.2023.10099220
摘要

In this rapidly changing world, machine learning has been creating a huge impact in daily aspects from smart cities to self-driving cars. One of these will be the contribution to the brain-computer interface (BCI), where brain signals are used to identify the emotions of people during various events in people's lives. In this research paper, we are proposing a multi-channel emotion recognition based on Electroencephalo-gram (EEG), using a fusion of a graph convolutional network (GCN) model and 1D Convolutional Neural Network (CNN) which classify emotions better than various existing research. Convolutional models are best known for finding features and hidden properties, and a graph convolutional network is best for connected data, which uses nodes and graphs, along with the embedded neural network to train a graph. Graph convolutional layers can provide intrinsic properties within the graph, which are trained on top of CNN layers for a deeper level of feature classification, which can result in better classification results. We have used EEG signals, collected from datasets like Dreamer and GAMEEMO and used various data extraction, and feature extraction processes to extract important features, and passed it to our model to detect emotions in four categories (boring, calm, horror, excitement), leading to an accuracy of at most 98% and an average of 97.6% of the total experiments tested. Our research also shows that for larger sizes of data, the accuracy gets better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zplease完成签到,获得积分10
2秒前
郑雅柔完成签到 ,获得积分0
3秒前
南浅发布了新的文献求助10
4秒前
andy发布了新的文献求助10
6秒前
HEAUBOOK应助chen采纳,获得10
6秒前
奋斗的醉柳完成签到,获得积分10
7秒前
打打应助andy采纳,获得10
9秒前
jenningseastera应助MOLLY采纳,获得10
10秒前
维拉帕米完成签到,获得积分10
11秒前
moon完成签到 ,获得积分10
12秒前
Stalin发布了新的文献求助20
15秒前
SciGPT应助曾经电源采纳,获得10
16秒前
科研通AI5应助小方采纳,获得10
17秒前
万能图书馆应助lzjz采纳,获得30
17秒前
19秒前
犹豫花卷完成签到,获得积分20
20秒前
领导范儿应助四角水采纳,获得10
23秒前
栗子馅发布了新的文献求助10
24秒前
犹豫花卷发布了新的文献求助200
24秒前
一闪一闪亮晶晶完成签到 ,获得积分10
25秒前
bkagyin应助大佬采纳,获得10
26秒前
chen完成签到,获得积分10
27秒前
32秒前
32秒前
央央关注了科研通微信公众号
33秒前
Doct完成签到,获得积分10
33秒前
33秒前
33秒前
34秒前
36秒前
四角水发布了新的文献求助10
37秒前
大佬发布了新的文献求助10
38秒前
小研发布了新的文献求助10
38秒前
科研通AI5应助小方采纳,获得10
39秒前
41秒前
曾经电源发布了新的文献求助10
41秒前
41秒前
英俊的铭应助Mianiu采纳,获得10
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557