GeneCompass: Deciphering Universal Gene Regulatory Mechanisms with Knowledge-Informed Cross-Species Foundation Model

重要事件 基础(证据) 数据科学 钥匙(锁) 计算机科学 基因调控网络 计算生物学 生物 基因 生态学 遗传学 基因表达 政治学 地理 考古 法学
作者
Xiaodong Yang,Guole Liu,Guihai Feng,Dechao Bu,Pengfei Wang,Jie Jiang,Shubai Chen,Qinmeng Yang,Yiyang Zhang,Zhenpeng Man,Zhongming Liang,Zichen Wang,Yaning Li,Zheng Li,Yana Liu,Yao Tian,Ao Li,Jingxi Dong,Zhilong Hu,Fang Chen
标识
DOI:10.1101/2023.09.26.559542
摘要

Abstract Deciphering the universal gene regulatory mechanisms in diverse organisms holds great potential to advance our knowledge of fundamental life process and facilitate research on clinical applications. However, the traditional research paradigm primarily focuses on individual model organisms, resulting in limited collection and integration of complex features on various cell types across species. Recent breakthroughs in single-cell sequencing and advancements in deep learning techniques present an unprecedented opportunity to tackle this challenge. In this study, we developed GeneCompass, the first knowledge-informed, cross-species foundation model pre-trained on an extensive dataset of over 120 million single-cell transcriptomes from human and mouse. During pre-training, GeneCompass effectively integrates four types of biological prior knowledge to enhance the understanding of gene regulatory mechanisms in a self-supervised manner. Fine-tuning towards multiple downstream tasks, GeneCompass outperforms competing state-of-the-art models in multiple tasks on single species and unlocks new realms of cross-species biological investigation. Overall, GeneCompass marks a milestone in advancing knowledge of universal gene regulatory mechanisms and accelerating the discovery of key cell fate regulators and candidate targets for drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
JerryJi发布了新的文献求助10
2秒前
3秒前
赵大虾完成签到,获得积分10
3秒前
4秒前
5秒前
大不里士发布了新的文献求助10
5秒前
5秒前
哦哟完成签到,获得积分10
6秒前
qq发布了新的文献求助10
6秒前
7秒前
所所应助pathway采纳,获得10
7秒前
ljhy完成签到,获得积分10
7秒前
执着俊驰发布了新的文献求助10
9秒前
赵大虾发布了新的文献求助10
9秒前
10秒前
ljhy发布了新的文献求助10
10秒前
10秒前
xhl发布了新的文献求助10
11秒前
12秒前
哦哟发布了新的文献求助10
12秒前
Lindsay发布了新的文献求助10
15秒前
Denmark发布了新的文献求助50
17秒前
17秒前
大不里士完成签到,获得积分10
18秒前
ceeray23应助赵大虾采纳,获得10
21秒前
hope完成签到,获得积分10
26秒前
JerryJi完成签到,获得积分10
26秒前
26秒前
29秒前
zhao完成签到 ,获得积分10
30秒前
30秒前
李健应助黄花花采纳,获得10
31秒前
33秒前
clara完成签到,获得积分10
33秒前
孤独靖柏应助ZQ采纳,获得10
35秒前
xgx984完成签到,获得积分10
36秒前
37秒前
Liu应助张晓飞采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942380
求助须知:如何正确求助?哪些是违规求助? 3487660
关于积分的说明 11044653
捐赠科研通 3218059
什么是DOI,文献DOI怎么找? 1778763
邀请新用户注册赠送积分活动 864413
科研通“疑难数据库(出版商)”最低求助积分说明 799438